Abstract

The potential of additive layer manufacturing (ALM) is high, with a whole new set of manufacturable parts with unseen complexity being offered. Moreover, the combination of topology optimization (TO) with ALM has brought mutual advantages. However, the transition between TO and ALM is a nontrivial step that requires a robust methodology. Thus, the purpose of this work is to evaluate the capabilities of adopting the commonly used Laplacian smoothing methodology as the bridging tool between TO and ALM. Several algorithms are presented and compared in terms of efficiency and performance. Most importantly, a different concept of Laplacian smoothing is presented as well as a set of metrics to evaluate the performance of the algorithms, with the advantages and disadvantages of each algorithm being discussed. In the end, the proposed mutable diffusion Laplacian algorithm is presented and exhibits less volume shrinkage and shows better preservation of some geometrical features such as thin members and edges. Moreover, a new volume constraint is presented, decreasing the resulting structural changes in the presented geometry and improving the final mesh quality.

References

1.
Aremu
,
A.
,
Ashcroft
,
I.
,
Hague
,
R.
,
Wildman
,
R.
, and
Tuck
,
C.
,
2010
, “
Suitability of SIMP and BESO Topology Optimization Algorithms for Additive Manufacture
,”
21st Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, Vol.
21
, pp.
679
692
.
2.
Barroqueiro
,
B.
,
Andrade-Campos
,
A.
,
Valente
,
R. A. F.
, and
Neto
,
V.
,
2019
, “
Metal Additive Manufacturing Cycle in Aerospace Industry: A Comprehensive Review
,”
J. Manufact. Mater. Process.
,
3
(
52
), pp.
1
21
.
3.
Rosen
,
D. W.
,
Seepersad
,
C.
,
Simpson
,
T. W.
, and
Williams
,
C. B.
,
2015
, “
Special Issue: Design for Additive Manufacturing: A Paradigm Shift in Design, Fabrication, and Qualification
,”
J. Mech. Design, ASME
,
137
(
11
), p.
110301
. 10.1115/1.4031470
4.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
, and
Simpson
,
T. W.
,
2015
, “
(Re)designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
5.
Kébreau
,
S.
,
Cambrésy
,
D. P.
,
Dröse
,
A.
,
Gröne
,
V.
,
Schimanski
,
K.
, and
Syassen
,
F.
,
2016
, “
Maturation of Additive Manufacturing for Implementation Into Ariane Secondary Structures: Overview and Status of “alm Iscar”
,”
14th European Conference on Spacecraft Structures, Materials and Environmental Testing
,
Toulouse, France
,
Sept. 27–30
.
6.
Pommatau
,
G.
,
Montredon
,
F.
,
Carlino
,
A.
,
Salvi
,
M.
,
Kot
,
E.
,
Clement
,
F.
, and
Abed
,
S.
,
2016
, “
Engineering Design Cycle for an Additive Layer Manufactured Secondary Structure, From Concept to Final Validation
,”
14th European Conference on Spacecraft Structures, Materials And Environmental Testing
,
Toulouse, France
,
Sept. 27–30
.
7.
Zegard
,
T.
, and
Paulino
,
G. H.
,
2016
, “
Bridging Topology Optimization and Additive Manufacturing
,”
Struct. Multidisci. Optim.
,
53
(
1
), pp.
175
192
. 10.1007/s00158-015-1274-4
8.
Vogiatzis
,
P.
,
Chen
,
S.
, and
Zhou
,
C.
,
2017
, “
An Open Source Framework for Integrated Additive Manufacturing and Level-Set-Based Topology Optimization
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
4
), p.
041012
. 10.1115/1.4037738
9.
Maute
,
K.
,
Tkachuk
,
A.
,
Wu
,
J.
,
Jerry Qi
,
H.
,
Ding
,
Z.
, and
Dunn
,
M. L.
,
2015
, “
Level Set Topology Optimization of Printed Active Composites
,”
J. Mech. Des. ASME
,
137
(
11
), pp.
111402
111415
. 10.1115/1.4030994
10.
Bærentzen
,
J.
,
Gravesen
,
J.
,
Anton
,
F.
, and
Aanæs
,
H.
,
2012
,
Guide to Computational Geometry Processing: Foundations, Algorithms, and Methods
,
Springer
,
New York
.
11.
Vartziotis
,
D.
, and
Himpel
,
B.
,
2014
, “
Laplacian Smoothing Revisited
,”
arXiv: Optimization and Control
, pp.
1
19
.
12.
Liu
,
T.
,
Chen
,
M.
,
Song
,
Y.
,
Li
,
H.
, and
Lu
,
B.
,
2017
, “
Quality Improvement of Surface Triangular Mesh Using a Modified Laplacian Smoothing
,”
PLoS. One.
,
12
(
9
), pp.
1
16
.
13.
Ohtake
,
Y.
,
Belyaev
,
A.
, and
Bogaevski
,
I.
,
2001
, “
Mesh Regularization and Adaptive Smoothing
,”
Comput. Aided Des.
,
33
(
11
), pp.
789
800
.
14.
Duarte
,
M. E.
, and
Sacht
,
L.
,
2017
, “
Mean Curvature Flow and Applications
,”
30th Conference on Graphics, Patterns and Images SIBGRAPI 2017
,
Niterói, Brasil
,
Oct. 17–20
, pp.
1
4
.
15.
Vallet
,
B.
, and
Ly
,
B.
,
2008
, “
Spectral Geometry Processing With Manifold Harmonics
,”
Comput. Graph. Forum
,
27
(
2
), pp.
251
260
. 10.1111/j.1467-8659.2008.01122.x
16.
Zhang
,
H.
,
Van Kaick
,
O.
, and
Dyer
,
R.
,
2010
, “
Spectral Mesh Processing
,”
Computer Graphics Forum
,
29
(
6
), pp.
1865
1894
. 10.1111/j.1467-8659.2010.01655.x
17.
Fleishman
,
S.
,
Drori
,
I.
, and
Cohen-Or
,
D.
,
2003
, “
Bilateral Mesh Denoising
,”
ACM Trans. Graph.
,
22
(
3
), pp.
950
953
. 10.1145/882262.882368
18.
Wei
,
M.
,
Shen
,
W.
,
Qin
,
J.
,
Wu
,
J.
,
Wong
,
T.-T.
, and
Heng
,
P.-A.
,
2013
, “
Feature-Preserving Optimization for Noisy Mesh Using Joint Bilateral Filter and Constrained Laplacian Smoothing
,”
Opt. Lasers Engin.
,
51
(
11
), pp.
1223
1234
. 10.1016/j.optlaseng.2013.04.018
19.
Li
,
T.
,
Liu
,
W.
,
Liu
,
H.
,
Wang
,
J.
, and
Liu
,
L.
,
2019
, “
Feature-Convinced Mesh Denoising
,”
Graph. Models
,
101
(
1
), pp.
17
26
. 10.1016/j.gmod.2018.12.002
20.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
. 10.1115/1.4030989
21.
Hoffarth
,
M.
,
Gerzen
,
N.
, and
Pedersen
,
C.
,
2017
, “
ALM Overhang Constraint in Topology Optimization for Industrial Applications
,”
12th World Congress on Structural and Multidisciplinary Optimization
,
Braunschweig, Germany
,
June 5–9
.
22.
Barroqueiro
,
B.
,
Andrade-Campos
,
A.
, and
Valente
,
R. A. F.
,
2019
, “
Designing Self Supported Slm Structures via Topology Optimization
,”
J. Manufact. Mater. Process.
,
3
(
3
), pp.
1
20
.
23.
Langelaar
,
M.
,
2017
, “
An Additive Manufacturing Filter for Topology Optimization of Print-ready Designs
,”
Struct. Multidisci. Optim.
,
55
, pp.
871
883
. 10.1007/s00158-016-1522-2
24.
Desbrun
,
M.
,
Meyer
,
M.
,
Schröder
,
P.
, and
Barr
,
A. H.
,
1999
, “
Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow
,”
Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99
,
Los Angeles, CA
,
Aug. 8–13
,
ACM Press/Addison-Wesley Publishing Co.
, pp.
317
324
.
25.
Taubin
,
G.
,
1995
, “
A Signal Processing Approach to Fair Surface Design
,”
Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95
,
Los Angeles, CA
,
Aug. 6–11
,
ACM
, pp.
351
358
.
26.
Taubin
,
G.
,
2000
, “
Geometric Signal Processing on Polygonal Meshes
,”
Eurographics 2000 - STARs
,
Swansea, UK
,
Apr. 4–6
,
Eurographics Association
.
27.
Vollmer
,
J.
,
Mencl
,
R.
, and
Müller
,
H.
,
1999
, “
Improved Laplacian Smoothing of Noisy Surface Meshes
,”
Comput. Graph. Forum
,
18
(
3
), pp.
131
138
. 10.1111/1467-8659.00334
28.
Haggerty
,
M. D.
,
2019
, “
Trimesh, Version 2.37.27
,” Computer Software, https://github.com/mikedh/trimesh, Accessed July 24, 2019.
29.
Continuum Analytics
,
2019
, “
Conda. OS-Agnostic, System-Level Binary Package and Environment Manager, Version 4.7.5
,” https://conda.io, Accessed July 24, 2019.
30.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A Three-Dimensional Finite Element Mesh Generator With Built-In Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Engin.
,
79
(
11
), pp.
1309
1331
. 10.1002/nme.2579
You do not currently have access to this content.