Abstract

The bamboo weevil, Cyrtotrachelus buqueti, has excellent flight ability and strong environmental adaptability. When it flies, its fore wings and hind wings are unfolded, whereas when it crawls, its fore wings are closed, and its flexible hind wings are regularly folded under the fore wings. In this paper, the hind wing folding/unfolding pattern of C. buqueti is analyzed and a new bionic foldable wing with rigid–flexible coupling consisting of a link mechanism and a wing membrane is constructed. The movement of the link at the wing base mimics the contraction of a muscle in the thorax that triggers scissor-like motion and the deployment of the veins. Elastic hinges are used to mimic the rotational motion of the wing base and the vein joints. The static/dynamic characteristics of bionic foldable wings are further analyzed, and the LS-DYNA software is used to investigate rigid–flexible coupling dynamics. The elastic deformation of the wing membrane, kinematic characteristics of the linkage mechanism, and modes of the whole system are calculated. Static analysis of the structure reveals that the foldable wing has excellent stiffness characteristics and load-bearing capacity. The bionic foldable wing is constructed using three-dimensional (3D) printing technology, and its folding and unfolding performance is tested. Evaluation of its performance shows that the bionic wing has a large fold ratio and can achieve stable folding and unfolding motions. A slightly tighter assembly between the pin and the hinge hole ensures that the wing does not fold back during flapping.

References

1.
Stanford
,
B.
, and
Beran
,
P.
,
2012
, “
Optimal Compliant Flapping Mechanism Topologies With Multiple Load Cases
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051007
. 10.1115/1.4006438
2.
Bejgerowski
,
W.
,
Ananthanarayanan
,
A.
,
Mueller
,
D.
, and
Gup
,
S. K.
,
2009
, “
Integrated Product and Process Design for a Flapping Wing Drive Mechanism
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061006
. 10.1115/1.3116258
3.
De Croon
,
G. C.
,
De Clercq
,
K. M.
,
Ruijsink
,
R.
,
Remes
,
B. D.
, and
De Wagter
,
C.
,
2009
, “
Design, “Aerodynamics, and Vision-Based Control of the DelFly
,”
Int. J. Micro Air Veh.
,
1
(
2
), pp.
71
97
. 10.1260/175682909789498288
4.
Sreetharan
,
P. S.
, and
Wood
,
R. J.
,
2010
, “
Passive Aerodynamic Drag Balancing in a Flapping-Wing Robotic Insect
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051006
. 10.1115/1.4001379
5.
Ma
,
K. Y.
,
Chirarattananon
,
P.
,
Fuller
,
S. B.
, and
Wood
,
R. J.
,
2013
, “
Controlled Flight of a Biologically Inspired, Insect-Scale Robot
,”
Science
,
340
(
6132
), pp.
603
607
. 10.1126/science.1231806
6.
Caetano
,
J. V.
,
Percin
,
M.
,
Van Oudheusden
,
B. W.
,
Remes
,
B. D. W.
,
De Wagter
,
C.
,
De Croon
,
G. C. H.
, and
De Visser
,
C. C.
,
2015
, “
Error Analysis and Assessment of Unsteady Forces Acting on a Flapping Wing Micro Air Vehicle: Free Flight Versus Wind-Tunnel Experimental Methods
,”
Bioinspir. Biomim.
,
10
(
5
), p.
056004
. 10.1088/1748-3190/10/5/056004
7.
Nguyen
,
Q. V.
, and
Chan
,
W. L.
,
2018
, “
Development and Flight Performance of a Biologically-Inspired Tailless Flapping-Wing Micro air Vehicle With Wing Stroke Plane Modulation
,”
Bioinspir. Biomim.
,
14
(
1
), pp.
1
28
. 10.1088/1748-3190/aaefa0
8.
Chen
,
Y.
,
Wang
,
H.
,
Helbling
,
E. F.
,
Jafferis
,
N. T.
,
Zufferey
,
R.
,
Ong
,
A.
,
Ma
,
K. Y.
,
Gravish
,
N.
,
Chirarattananon
,
P.
,
Kovac
,
M.
, and
Wood
,
R. J.
,
2017
, “
A Biologically Inspired, Flapping-Wing, Hybrid Aerial-Aquatic Microrobot
,”
Sci. Robot.
,
2
(
11
), p.
eaao5619
. 10.1126/scirobotics.aao5619
9.
Liu
,
Z.
,
Yan
,
X.
,
Qi
,
M.
,
Zhang
,
X.
, and
Lin
,
L.
,
2017
, “
Low-Voltage Electromagnetic Actuators for Flapping-Wing Micro Aerial Vehicles
,”
Sensors Actuat. A-Phys.
,
265
, pp.
1
9
. 10.1016/j.sna.2017.08.027
10.
Karasek
,
M.
,
Muijres
,
F. T.
,
De Wagter
,
C.
,
Remes
,
B. D.
, and
De Croon
,
G. C.
,
2018
, “
A Tailless Aerial Robotic Flapper Reveals That Flies Use Torque Coupling in Rapid Banked Turns
,”
Science
,
361
(
6407
), pp.
1089
1094
. 10.1126/science.aat0350
11.
Yang
,
W.
,
Wang
,
L.
, and
Song
,
B.
,
2018
, “
Dove: A Biomimetic Flapping-Wing Micro Air Vehicle
,”
Int. J. Micro Air Veh.
,
10
(
1
), pp.
70
84
. 10.1177/1756829317734837
12.
Holness
,
A.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2018
, “
Characterizing and Modeling the Enhancement of Lift and Payload Capacity Resulting From Thrust Augmentation in a Propeller-Assisted Flapping Wing Air Vehicle
,”
Int. J. Micro Air Veh.
,
10
(
1
), pp.
50
69
. 10.1177/1756829317734836
13.
Phan
,
H. V.
,
Aurecianus
,
S.
,
Kang
,
T.
, and
Park
,
H. C.
,
2019
, “
KUBeetle-S: An Insect-Like, Tailless, Hover-Capable Robot That Can Fly With a Low-Torque Control Mechanism
,”
Int. J. Micro Air Veh.
,
11
, pp.
1
10
. 10.1177/1756829319861371
14.
Jafferis
,
N. T.
,
Helbling
,
E. F.
,
Karpelson
,
M.
, and
Wood
,
R. J.
,
2019
, “
Untethered Flight of an Insect-Sized Flapping-Wing Microscale Aerial Vehicle
,”
Nature
,
570
(
7762
), pp.
491
495
. 10.1038/s41586-019-1322-0
15.
Haas
,
F.
, and
Wootton
,
R. J.
,
1996
, “
Two Basic Mechanisms in Insect Wing Folding
,”
Proc. Biol. Sci.
,
263
(
1377
), pp.
1651
1658
. 10.1098/rspb.1996.0241
16.
Haas
,
F.
,
Gorb
,
S.
, and
Wootton
,
R. J.
,
2000
, “
Elastic Joints in Dermapteran Hind Wings: Materials and Wing Folding
,”
Arthropod Struct. Dev.
,
29
(
2
), pp.
137
146
. 10.1016/S1467-8039(00)00025-6
17.
Saito
,
K.
,
Yamamoto
,
S.
,
Maruyama
,
M.
, and
Okabe
,
Y.
,
2014
, “
Asymmetric Hindwing Foldings in Rove Beetles
,”
Proc. Natl. Acad. Sci. USA
,
111
(
46
), pp.
16349
16352
. 10.1073/pnas.1409468111
18.
Deiters
,
J.
,
Kowalczyk
,
W.
, and
Seidl
,
T.
,
2016
, “
Simultaneous Optimisation of Earwig Hindwings for Flight and Folding
,”
Biol. Open
,
5
(
5
), pp.
638
644
. 10.1242/bio.016527
19.
Faber
,
J. A.
,
Arrieta
,
A. F.
, and
Studart
,
A. R.
,
2018
, “
Bioinspired Spring Origami
,”
Science
,
359
(
6382
), pp.
1386
1391
. 10.1126/science.aap7753
20.
Muhammad
,
A.
,
Park
,
H. C.
,
Hwang
,
D. Y.
,
Byun
,
D.
, and
Goo
,
N. S.
,
2009
, “
Mimicking Unfolding Motion of a Beetle Hind Wing
,”
Chin. Sci. Bull.
,
54
(
14
), pp.
2416
2424
. 10.1007/s11434-009-0242-z
21.
Muhammad
,
A.
,
Nguyen
,
Q. V.
,
Park
,
H. C.
,
Hwang
,
D. Y.
,
Byun
,
D.
, and
Goo
,
N. S.
,
2010
, “
Improvement of Artificial Foldable Wing Models by Mimicking the Unfolding/Folding Mechanism of a Beetle Hind Wing
,”
J. Bionic Eng.
,
7
(
2
), pp.
134
141
. 10.1016/S1672-6529(09)60185-2
22.
Truong
,
Q.
,
Argyoganendro
,
B. W.
, and
Park
,
H. C.
,
2014
, “
Design and Demonstration of Insect Mimicking Foldable Artificial Wing Using Four-Bar Linkage Systems
,”
J. Bionic Eng.
,
11
(
3
), pp.
449
458
. 10.1016/S1672-6529(14)60057-3
23.
Sun
,
J.
,
Ling
,
M.
,
Wu
,
W.
,
Bhushan
,
B.
, and
Tong
,
J.
,
2014
, “
The Hydraulic Mechanism of the Unfolding of Hind Wings in Dorcus Titanus Platymelus (Order: Coleoptera)
,”
Int. J. Mol. Sci.
,
15
(
4
), pp.
6009
6018
. 10.3390/ijms15046009
24.
Sun
,
J.
,
Wu
,
W.
,
Ling
,
M.
,
Bhushan
,
B.
, and
Tong
,
J.
,
2016
, “
The Hydraulic Mechanism in the Hind Wing Veins of Cybister Japonicus Sharp (Order: Coleoptera)
,”
Beilstein J. Nanotechnol.
,
7
(
1
), pp.
904
913
. 10.3762/bjnano.7.82
25.
Zhang
,
Z.
,
Sun
,
X.
,
Du
,
P.
,
Sun
,
J.
, and
Wu
,
Y.
,
2018
, “
Design of a Hydraulically-Driven Bionic Folding Wing
,”
J. Mech. Behav. Biomed. Mater.
,
82
, pp.
120
125
. 10.1016/j.jmbbm.2018.03.024
26.
Li
,
X.
,
Guo
,
C.
, and
Li
,
L.
,
2019
, “
Functional Morphology and Structural Characteristics of the Hind Wings of the Bamboo Weevil Cyrtotrachelus Buqueti (Coleoptera, Curculionidae)
,”
Anim. Cells Syst.
,
23
(
2
), pp.
143
153
. 10.1080/19768354.2019.1592020
27.
Li
,
X.
, and
Guo
,
C.
,
2019
, “
Microstructure and Material Properties of Hind Wings of a Bamboo Weevil Cyrtotrachelus Buqueti (Coleoptera: Curculionidae)
,”
Microsc. Res. Tech.
,
82
(
7
), pp.
1102
1113
. 10.1002/jemt.23258
28.
Li
,
X.
, and
Guo
,
C.
,
2019
, “
Structural Characteristics Analysis of the Hind Wings in a Bamboo Weevil (Cyrtotrachelus Buqueti)
,”
IET Nanobiotechnol.
,
13
(
8
), pp.
850
856
. 10.1049/iet-nbt.2018.5409
29.
Li
,
X.
, and
Guo
,
C.
,
2020
, “
Wing-Kinematics Measurement and Flight Modelling of the Bamboo Weevil C. Buqueti
,”
IET Nanobiotechnol.
,
14
(
1
), pp.
53
58
. 10.1049/iet-nbt.2019.0261
30.
Linghu
,
Z.
,
Zhao
,
C.
,
Yang
,
H.
, and
Zheng
,
X.
,
2015
, “
Beetle Wing Folding Facilitated by Micro-Protrusions on the Body Surface: A Case of Allomyrina Dichotoma
,”
Chin. Sci. Bull.
,
60
(
16
), pp.
1457
1460
. 10.1007/s11434-015-0865-1
31.
Baek
,
S. M.
,
Yim
,
S.
,
Chae
,
S. H.
,
Lee
,
D. Y.
, and
Cho
,
K. J.
,
2020
, “
Ladybird Beetle–Inspired Compliant Origami
,”
Sci. Robot.
,
5
(
41
), p.
eaaz6262
. 10.1126/scirobotics.aaz6262
32.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
. 10.1126/science.aab2870
33.
Wang
,
C. D.
,
Wang
,
C.
,
Ning
,
Y.
,
Chen
,
L.
, and
Wang
,
X.
,
2018
, “
Design and Mechanical Analysis of Bionic Foldable Beetle Wings
,”
Appl. Bionics Biomech.
,
2018
, pp.
1
10
. 10.1155/2018/1308465
34.
Shyy
,
W.
,
Berg
,
M.
, and
Ljungqvist
,
D.
,
1999
, “
Flapping and Flexible Wings for Biological and Micro Air Vehicles
,”
Prog. Aerosp. SCI.
,
35
(
5
), pp.
455
505
. 10.1016/S0376-0421(98)00016-5
35.
Stowers
,
A. K.
, and
Lentink
,
D.
,
2015
, “
Folding in and out: Passive Morphing in Flapping Wings
,”
Bioinspir. Biomim.
,
10
(
2
), p.
025001
. 10.1088/1748-3190/10/2/025001
You do not currently have access to this content.