Abstract

Cyber–physical–social systems (CPSS) with highly integrated functions of sensing, actuation, computation, and communication are becoming the mainstream consumer and commercial products. The performance of CPSS heavily relies on the information sharing between devices. Given the extensive data collection and sharing, security and privacy are of major concerns. Thus, one major challenge of designing those CPSS is how to incorporate the perception of trust in product and systems design. Recently, a trust quantification method was proposed to measure the trustworthiness of CPSS by quantitative metrics of ability, benevolence, and integrity. The CPSS network architecture can be optimized by choosing a subnet such that the trust metrics are maximized. The combinatorial network optimization problem, however, is computationally challenging. Most of the available global optimization algorithms for solving such problems are heuristic methods. In this paper, a surrogate-based discrete Bayesian optimization method is developed to perform network design, where the most trustworthy CPSS network with respect to a reference node is formed to collaborate and share information with. The applications of ability and benevolence metrics in design optimization of CPSS architecture are demonstrated.

References

1.
Wang
,
Y.
,
2018
, “
Trust Based Cyber-Physical Systems Network Design
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2018)
,
Quebec City, Canada
,
Aug. 26–29
, p.
V01AT02A037
.
2.
Wang
,
Y.
,
2018
, “
Trust Quantification for Networked Cyber-Physical Systems
,”
IEEE Internet Things J.
,
5
(
3
), pp.
2055
2070
. 10.1109/JIOT.2018.2822677
3.
Wang
,
Y.
,
2018
, “
Trustworthiness in Designing Cyber-Physical Systems
,”
Proceedings of the 12th International Symposium on Tools and Methods of Competitive Engineering (TMCE2018)
,
Las Palmas, Gran Canaria, Spain
,
May 7–11
, pp.
27
40
.
4.
Wang
,
Y.
,
2016
, “
System Resilience Quantification for Probabilistic Design of Internet-of-Things Architecture
,”
Proceedings of the 2016 ASME International Design Engineering Technical Conferences and the Computer and Information in Engineering Conference (IDETC/CIE2016)
,
Charlotte, NC
,
Aug. 21–24
, p.
V01BT02A011
.
5.
Wang
,
Y.
,
2018
, “
Resilience Quantification for Probabilistic Design of Cyber-Physical System Networks
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst., B: Mech. Eng.
,
4
(
3
), p.
031006
. 10.1115/1.4039148
6.
Tavčar
,
J.
, and
Horváth
,
I.
,
2018
, “
A Review of the Principles of Designing Smart Cyber-Physical Systems for Run-Time Adaptation: Learned Lessons and Open Issues
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
49
(
1
), pp.
145
158
. 10.1109/TSMC.2018.2814539
7.
Grimm
,
M.
,
Anderl
,
R.
, and
Wang
,
Y.
,
2014
, “
Cyber-Physical Augmentation: An Exploration
,”
Proceedings of the 10th International Symposium on Tools and Methods of Competitive Engineering (TMCE2014)
,
Budapest, Hungary
,
May 19–23
, pp.
61
72
.
8.
Horváth
,
I.
, and
Gerritsen
,
B. H.
,
2012
, “
Cyber-Physical Systems: Concepts, Technologies and Implementation Principles
,”
Proceedings of the 9th International Symposium on Tools and Methods of Competitive Engineering (TMCE2012)
,
Karlsruhe, Germany
,
May 7–11
, pp.
19
36
.
9.
Jeon
,
J.
,
Chun
,
I.
, and
Kim
,
W.
,
2012
, “
Metamodel-Based CPS Modeling Tool
,”
Embedded and Multimedia Computing Technology and Service, Lecture Notes in Electrical Engineering.
Vol.
181
, pp.
285
291
.
Springer
.
10.
Lee
,
K. H.
,
Hong
,
J. H.
, and
Kim
,
T. G.
,
2015
, “
System of Systems Approach to Formal Modeling of CPS for Simulation-Based Analysis
,”
ETRI J.
,
37
(
1
), pp.
175
185
. 10.4218/etrij.15.0114.0863
11.
Lee
,
E. A.
,
Niknami
,
M.
,
Nouidui
,
T. S.
, and
Wetter
,
M.
,
2015
, “
Modeling and Simulating Cyber-Physical Systems Using CyPhySim
,”
Proceedings of the 12th IEEE International Conference on Embedded Software
,
Amsterdam, The Netherlands
,
Oct. 4–9
, pp.
115
124
.
12.
Saeedloei
,
N.
, and
Gupta
,
G.
,
2011
, “
A Logic-Based Modeling and Verification of CPS
,”
ACM SIGBED Rev.
,
8
(
2
), pp.
31
34
. 10.1145/2000367.2000374
13.
Horváth
,
I.
,
2019
, “
A Computational Framework for Procedural Abduction Done by Smart Cyber-Physical Systems
,”
Designs
,
3
(
1
), p.
1
. 10.3390/designs3010001
14.
Burmester
,
M.
,
Magkos
,
E.
, and
Chrissikopoulos
,
V.
,
2012
, “
Modeling Security in Cyber–Physical Systems
,”
Int. J. Crit. Infrastruct. Prot.
,
5
(
3–4
), pp.
118
126
. 10.1016/j.ijcip.2012.08.002
15.
Petnga
,
L.
, and
Austin
,
M.
,
2016
, “
An Ontological Framework for Knowledge Modeling and Decision Support in Cyber-Physical Systems
,”
Adv. Eng. Inform.
,
30
(
1
), pp.
77
94
. 10.1016/j.aei.2015.12.003
16.
Pourtalebi
,
S.
, and
Horváth
,
I.
,
2017
, “
Information Schema Constructs for Instantiation and Composition of System Manifestation Features
,”
Front. Inform. Technol. Electron. Eng.
,
18
(
9
), pp.
1396
1415
. 10.1631/FITEE.1601235
17.
Magureanu
,
G.
,
Gavrilescu
,
M.
,
Pescaru
,
D.
, and
Doboli
,
A.
,
2010
, “
Towards UML Modeling of Cyber-Physical Systems: A Case Study for Gas Distribution
,”
Proceedings of the IEEE 8th International Symposium on Intelligent Systems and Informatics
,
Subotica, Serbia
,
Sept. 10–11
, pp.
471
476
.
18.
Palachi
,
E.
,
Cohen
,
C.
, and
Takashi
,
S.
,
2013
, “
Simulation of Cyber Physical Models Using SysML and Numerical Solvers
,”
Proceedings of the 2013 IEEE International Systems Conference (SysCon)
,
Orlando, FL
,
Apr. 15–18
, pp.
671
675
.
19.
Wang
,
Y.
,
2020
, “
Information Dynamics in the Network of Cyber-Physical Systems
,”
Proceedings of the 13th International Symposium on Tools and Methods of Competitive Engineering (TMCE2020)
,
Dublin, Ireland
,
May 11–15
, pp.
13
26
.
20.
Horváth
,
I.
, and
Wang
,
J.
,
2015
, “
Towards a Comprehensive Theory of Multi-Aspect Interaction With Cyber Physical Systems
,”
Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2015)
,
Boston, MA
,
Aug. 2–5
, p.
V01BT02A009
.
21.
Li
,
Y.
,
Horváth
,
I.
, and
Rusák
,
Z.
,
2018
, “
Constructing Personalized Messages for Informing Cyber-Physical Systems Based on Dynamic Context Information Processing
,”
Proceedings of the 12th International Symposium on Tools and Methods of Competitive Engineering (TMCE2018)
,
Las Palmas, Gran Canaria, Spain
,
May 7–11
, pp.
105
120
.
22.
Tran
,
A. V.
,
Tran
,
M.
, and
Wang
,
Y.
,
2019
, “
Constrained Mixed-Integer Gaussian Mixture Bayesian Optimization and Its Applications in Designing Fractal and Auxetic Metamaterials
,”
Struct. Multidiscipl. Optim.
,
59
(
6
), pp.
2131
2154
. 10.1007/s00158-018-2182-1
23.
Iyer
,
A.
,
Zhang
,
Y.
,
Prasad
,
A.
,
Tao
,
S.
,
Wang
,
Y.
,
Schadler
,
L.
,
Brinson
,
L. C.
, and
Chen
,
W.
,
2019
, “
Data-Centric Mixed-Variable Bayesian Optimization for Materials Design
,”
Proceedings of the ASME 2019 IDETC/CIE Conferences
,
Anaheim, CA
,
Aug. 18–21
, p.
V02AT03A066
.
24.
Baptista
,
R.
, and
Poloczek
,
M.
,
2018
, “
Bayesian Optimization of Combinatorial Structures
,”
Proceedings of the 35th International Conference on Machine Learning, PMLR80
,
Stockholm, Sweden
, pp.
462
471
.
25.
Zaefferer
,
M.
,
Stork
,
J.
,
Friese
,
M.
,
Fischbach
,
A.
,
Naujoks
,
B.
, and
Bartz-Beielstein
,
T.
,
2014
, “
Efficient Global Optimization for Combinatorial Problems
,”
Proceedings of the 2014 ACM Annual Conference on Genetic and Evolutionary Computation
,
Vancouver, Canada
,
July 12–16
, pp.
871
878
.
26.
Garrido-Merchán
,
E. C.
, and
Hernández-Lobato
,
D.
,
2020
, “
Dealing With Categorical and Integer-Valued Variables in Bayesian Optimization With Gaussian Processes
,”
Neurocomputing
,
380
, pp.
20
35
. 10.1016/j.neucom.2019.11.004
27.
Zhang
,
J.
,
Yao
,
X.
,
Liu
,
M.
, and
Wang
,
Y.
,
2019
, “
A Bayesian Discrete Optimization Algorithm for Permutation Problems
,”
Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI 2019)
,
Xiamen, China
,
Dec. 6–9
, pp.
871
881
.
28.
Oh
,
C.
,
Tomczak
,
J.
,
Gavves
,
E.
, and
Welling
,
M.
,
2019
, “
Combinatorial Bayesian Optimization Using the Graph Cartesian Product
,”
Proceedings of the 2019 Advances in Neural Information Processing Systems (NIPS 2019)
,
Vancouver, Canada
.
29.
Ruan
,
Y.
, and
Durresi
,
A.
,
2016
, “
A Survey of Trust Management Systems for Online Social Communities–Trust Modeling, Trust Inference and Attacks
,”
Knowl.-Based Syst.
,
106
, pp.
150
163
. 10.1016/j.knosys.2016.05.042
30.
Li
,
X.
,
Zhou
,
F.
, and
Du
,
J.
,
2013
, “
LDTS: A Lightweight and Dependable Trust System for Clustered Wireless Sensor Networks
,”
IEEE Trans. Inf. Forensics Secur.
,
8
(
6
), pp.
924
935
. 10.1109/TIFS.2013.2240299
31.
Chen
,
Z.
,
Tian
,
L.
, and
Lin
,
C.
,
2017
, “
Trust Model of Wireless Sensor Networks and Its Application in Data Fusion
,”
Sensors
,
17
(
4
), p.
703
. 10.3390/s17040703
32.
Barber
,
K. S.
, and
Kim
,
J.
,
2001
, “
Belief Revision Process Based on Trust: Agents Evaluating Reputation of Information Sources
,”
Trust in Cyber-Societies
, pp.
73
82
.
Springer
.
33.
Kim
,
H.
,
Lee
,
H.
,
Kim
,
W.
, and
Kim
,
Y.
,
2010
, “
A Trust Evaluation Model for QoS Guarantee in Cloud Systems
,”
Int. J. GridDistrib. Comput.
,
3
(
1
), pp.
1
10
.
34.
Li
,
X.
,
Ma
,
H.
,
Zhou
,
F.
, and
Gui
,
X.
,
2014
, “
Service Operator-Aware Trust Scheme for Resource Matchmaking Across Multiple Clouds
,”
IEEE Trans. Parallel Distribut. Syst.
,
26
(
5
), pp.
1419
1429
. 10.1109/tpds.2014.2321750
35.
Yu
,
B.
, and
Singh
,
M. P.
,
2002
, “
Distributed Reputation Management for Electronic Commerce
,”
Comput. Intell.
,
18
(
4
), pp.
535
549
. 10.1111/1467-8640.00202
36.
Reddy
,
V. B.
,
Venkataraman
,
S.
, and
Negi
,
A.
,
2017
, “
Communication and Data Trust for Wireless Sensor Networks Using D–S Theory
,”
IEEE Sens. J.
,
17
(
12
), pp.
3921
3929
. 10.1109/jsen.2017.2699561
37.
Falcone
,
R.
,
Pezzulo
,
G.
, and
Castelfranchi
,
C.
,
2002
, “
A Fuzzy Approach to a Belief-Based Trust Computation
,”
Proceedings of the Workshop on Deception, Fraud and Trust in Agent Societies
,
Bologna, Italy
,
July 15
, Springer, pp.
73
86
. http://dx.doi.org/10.1007/3-540-36609-1_7.
38.
Alhamad
,
M.
,
Dillon
,
T.
, and
Chang
,
E.
,
2011
, “
A Trust-Evaluation Metric for Cloud Applications
,”
Int. J. Mach. Learn. Comput.
,
1
(
4
), p.
416
.
39.
Ashtiani
,
M.
, and
Azgomi
,
M. A.
,
2016
, “
Trust Modeling Based on a Combination of Fuzzy Analytic Hierarchy Process and Fuzzy VIKOR
,”
Soft Comput.
,
20
(
1
), pp.
399
421
. 10.1007/s00500-014-1516-1
40.
Hoogendoorn
,
M.
,
Jaffry
,
S. W.
,
Van Maanen
,
P. P.
, and
Treur
,
J.
,
2014
, “
Design and Validation of a Relative Trust Model
,”
Knowl-Based Syst.
,
57
, pp.
81
94
. 10.1016/j.knosys.2013.12.012
41.
Hu
,
W. L.
,
Akash
,
K.
,
Reid
,
T.
, and
Jain
,
N.
,
2018
, “
Computational Modeling of the Dynamics of Human Trust During Human–Machine Interactions
,”
IEEE Trans. Human-Mach. Syst.
,
49
(
6
), pp.
485
497
. 10.1109/thms.2018.2874188
42.
Chen
,
D.
,
Chang
,
G.
,
Sun
,
D.
,
Li
,
J.
,
Jia
,
J.
, and
Wang
,
X.
,
2011
, “
TRM-IoT: A Trust Management Model Based on Fuzzy Reputation for Internet of Things
,”
Comput. Sci. Inf. Syst.
,
8
(
4
), pp.
1207
1228
. 10.2298/csis110303056c
43.
Huang
,
J.
,
Seck
,
M. D.
, and
Gheorghe
,
A.
,
2016
, “
Towards Trustworthy Smart Cyber-Physical-Social Systems in the Era of Internet of Things
,”
IEEE Proceedings of the 2016 11th System of Systems Engineering Conference (SoSE)
,
Kongsberg, Norway
,
June 12–16
, pp.
1
6
. http://dx.doi.org/10.1109/sysose.2016.7542961
44.
Al-Hamadi
,
H.
, and
Chen
,
R.
,
2017
, “
Trust-Based Decision Making for Health IoT Systems
,”
IEEE Internet of Things J.
,
4
(
5
), pp.
1408
1419
. 10.1109/jiot.2017.2736446
45.
Yu
,
Z.
,
Zhou
,
L.
,
Ma
,
Z.
, and
El-Meligy
,
M. A.
,
2017
, “
Trustworthiness Modeling and Analysis of Cyber-Physical Manufacturing Systems
,”
IEEE Access
,
5
, pp.
26076
26085
. 10.1109/access.2017.2777438
46.
Xu
,
Q.
,
Su
,
Z.
,
Wang
,
Y.
, and
Dai
,
M.
,
2018
, “
A Trustworthy Content Caching and Bandwidth Allocation Scheme With Edge Computing for Smart Campus
,”
IEEE Access
,
6
, pp.
63868
63879
. 10.1109/access.2018.2872740
47.
Tang
,
L. A.
,
Yu
,
X.
,
Kim
,
S.
,
Gu
,
Q.
,
Han
,
J.
,
Leung
,
A.
, and
La Porta
,
T.
,
2013
, “
Trustworthiness Analysis of Sensor Data in Cyber-Physical Systems
,”
J. Comput. Syst. Sci.
,
79
(
3
), pp.
383
401
. 10.1016/j.jcss.2012.09.012
48.
Tao
,
H.
,
Bhuiyan
,
M. Z. A.
,
Rahman
,
M. A.
,
Wang
,
T.
,
Wu
,
J.
,
Salih
,
S. Q.
,
Li
,
Y.
, and
Hayajneh
,
T.
,
2020
, “
TrustData: Trustworthy and Secured Data Collection for Event Detection in Industrial Cyber-Physical System
,”
IEEE Trans. Ind. Inform.
,
16
(
5
), pp.
3311
3321
. 10.1109/tii.2019.2950192
49.
Junejo
,
A. K.
,
Komninos
,
N.
,
Sathiyanarayanan
,
M.
, and
Chowdhry
,
B. S.
,
2020
, “
Trustee: A Trust Management System for Fog-Enabled Cyber Physical Systems
,”
IEEE Trans. Emerg. Top. Comput.
(in press). 10.1109/tetc.2019.2957394
50.
Xia
,
H.
,
Xiao
,
F.
,
Zhang
,
S.-S.
,
Cheng
,
X.-G.
, and
Pan
,
Z.-K.
,
2020
, “
A Reputation-Based Model for Trust Evaluation in Social Cyber-Physical Systems
,”
IEEE Trans. Netw. Sci. Eng.
,
7
(
2
), pp.
792
804
. 10.1109/tnse.2018.2866783
51.
Mayer
,
R. C.
,
Davis
,
J. H.
, and
Schoorman
,
F. D.
,
1995
, “
An Integrative Model of Organizational Trust
,”
Acad. Manag. Rev.
,
20
(
3
), pp.
709
734
.
52.
Lee
,
M. K.
, and
Turban
,
E.
,
2001
, “
A Trust Model for Consumer Internet Shopping
,”
Int. J. Electron. Commer.
,
6
(
1
), pp.
75
91
.
53.
Chen
,
H.
,
2012
, “
The Influence of Perceived Value and Trust on Online Buying Intention
,”
J. Comput.
,
7
(
7
), pp.
1655
1662
.
54.
Yousafzai
,
S. Y.
,
Pallister
,
J. G.
, and
Foxall
,
G. R.
,
2005
, “
Strategies for Building and Communicating Trust in Electronic Banking: A Field Experiment
,”
Psychol. Market.
,
22
(
2
), pp.
181
201
. 10.1002/mar.20054
55.
Akter
,
S.
,
D'Ambra
,
J.
, and
Ray
,
P.
,
2011
, “
Trustworthiness in MHealth Information Services: An Assessment of a Hierarchical Model With Mediating and Moderating Effects Using Partial Least Squares (PLS)
,”
J. Am. Soc. Inf. Sci. Technol.
,
62
(
1
), pp.
100
116
. 10.1002/asi.21442
56.
Wang
,
T.
,
Luo
,
H.
,
Jia
,
W.
,
Liu
,
A.
, and
Xie
,
M.
,
2020
, “
MTES: An Intelligent Trust Evaluation Scheme in Sensor-Cloud-Enabled Industrial Internet of Things
,”
IEEE Trans. Ind. Inform.
,
16
(
3
), pp.
2054
2062
. 10.1109/tii.2019.2930286
57.
Shu
,
L.
,
Jiang
,
P.
,
Shao
,
X.
, and
Wang
,
Y.
,
2020
, “
A New Multi-Objective Bayesian Optimization Formulation With the Acquisition Function for Convergence and Diversity
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091703
. 10.1115/1.4046508
You do not currently have access to this content.