Abstract

This work deduces principles of bioinspired product architecture to effectively leverage biological function-sharing in engineering design. Function-sharing enables a single structure to perform multiple functions and can improve the performance characteristics of a system. The process of evolution via natural selection has led to the emergence of function-sharing adaptations in biological systems. However, the current practice of bioinspired function-sharing is largely limited to the solution-driven imitation of biological structures. This work aims to overcome such limitations by performing a function-based analysis of biological product architectures. First, a phylogenetic approach is used to select generalized case studies from the animal kingdom. Next, the product architectures of the selected case studies are then modeled using function modeling and analyzed by clustering the identified functions into modules. A function-based categorization of the sampled biological modules reveals the presence of four types of modules in the biological case studies. Analyzing the function-sharing scenarios associated with each type of biological module enables us to deduce four guidelines for bioinspired development and arrangement of function-sharing modules. Finally, a demonstration study applies the guidelines to the design of an inlet–outlet port for a washer–dryer system. The deduced guidelines can enable engineers to identify function-sharing scenarios in the early stages of product design and reduce the need to imitate biological structures for function-sharing.

References

1.
ISO
,
2015
,
ISO 18458: 2015: Biomimetics–Terminology, Concepts and Methodology
,
Beuth Verlag Berlin
,
Germany
.
2.
Fayemi
,
P. E.
,
Wanieck
,
K.
,
Zollfrank
,
C.
,
Maranzana
,
N.
, and
Aoussat
,
A.
,
2017
, “
Biomimetics: Process, Tools and Practice
,”
Bioinspiration Biomimetics
,
12
(
1
), p.
011002
. 10.1088/1748-3190/12/1/011002
3.
Vincent
,
J. F.
,
Bogatyreva
,
O. A.
,
Bogatyrev
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A.-K.
,
2006
, “
Biomimetics: its Practice and Theory
,”
J. R. Soc. Interface
,
3
(
9
), pp.
471
482
. 10.1098/rsif.2006.0127
4.
Goel
,
A. K.
,
McAdams
,
D. A.
, and
Stone
,
R. B.
,
2015
,
Biologically Inspired Design
,
Springer
,
London
.
5.
Fu
,
K.
,
Moreno
,
D.
,
Yang
,
M.
, and
Wood
,
K. L.
,
2014
, “
Bio-inspired Design: an Overview Investigating Open Questions From the Broader Field of Design-by-Analogy
,”
ASME J Mech. Des.
,
136
(
11
), p.
111102
. 10.1115/1.4028289
6.
Bhasin
,
D.
, and
McAdams
,
D.
,
2018
, “
The Characterization of Biological Organization, Abstraction, and Novelty in Biomimetic Design
,”
Designs
,
2
(
4
), p.
54
. 10.3390/designs2040054
7.
Subramanian
,
S. G.
,
Eng
,
M.
,
Krishnamurthy
,
V. R.
, and
Akleman
,
E.
,
2019
, “
Delaunay Lofts: A Biologically Inspired Approach for Modeling Space Filling Modular Structures
,”
Comput. Graphics
,
82
, pp.
73
83
. 10.1016/j.cag.2019.05.021
8.
Layton
,
A.
,
Bras
,
B.
, and
Weissburg
,
M.
,
2016
, “
Designing Industrial Networks Using Ecological Food web Metrics
,”
Environ. Sci. Technol.
,
50
(
20
), pp.
11243
11252
. 10.1021/acs.est.6b03066
9.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
. 10.1016/0048-7333(94)00775-3
10.
Dahmus
,
J. B.
,
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
,
2001
, “
Modular Product Architecture
,”
Des. Stud.
,
22
(
5
), pp.
409
424
. 10.1016/S0142-694X(01)00004-7
11.
Ulrich
,
K. T.
, and
Seering
,
W. P.
,
1990
, “
Function Sharing in Mechanical Design
,”
Des. Stud.
,
11
(
4
), pp.
223
234
. 10.1016/0142-694X(90)90041-A
12.
Ulrich
,
K.
,
1994
, “Fundamentals of Product Modularity,”
Management of Design
,
S.
Dasu
and
C.
Eastman
, eds.,
Springer
,
Dordrecht
, pp.
219
231
.
13.
Lewis
,
K.
, and
Kalyanasundaram
,
V.
,
2011
, “
A Function Based Approach for Product Integration
,”
ASME J Mech. Des.
,
136
(
4
), pp.
263
279
.
14.
Jarratt
,
T.
,
Eckert
,
C.
,
Clarkson
,
P.
, and
Schwankl
,
L.
,
2002
, “
Product Architecture and the Propagation of Engineering Change
,”
Proceedings of the 7th International Design Conference-DESIGN 2002
,
Dubronvik, Croatia
,
May 14–17, 2002
, DS 30, pp.
75
80
.
15.
Kitano
,
H.
,
2004
, “
Biological Robustness
,”
Nat. Rev. Genet.
,
5
(
11
), pp.
826
837
. 10.1038/nrg1471
16.
Whitacre
,
J. M.
,
2010
, “
Degeneracy: A Link Between Evolvability, Robustness and Complexity in Biological Systems
,”
Theor. Biol. Med. Modell.
,
7
(
1
), p.
6
. 10.1186/1742-4682-7-6
17.
Vakili
,
V.
, and
Shu
,
L. H.
,
2001
, “
Towards Biomimetic Concept Generation
,”
Proceedings of the DETC
,
Pittsburgh, PA
,
Sept. 9–12, 2001
,
ASME
, pp.
327
335
.
18.
Helms
,
M.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Stud.
,
30
(
5
), pp.
606
622
. 10.1016/j.destud.2009.04.003
19.
Pandremenos
,
J.
,
Vasiliadis
,
E.
, and
Chryssolouris
,
G.
,
2012
, “
Design Architectures in Biology
,”
Procedia CIRP
,
3
, pp.
448
452
. 10.1016/j.procir.2012.07.077
20.
Wadia
,
A. P.
, and
McAdams
,
D. A.
,
2010
, “
Developing Biomimetic Guidelines for the Highly Optimized and Robust Design of Complex Products or Their Components
,”
Proceedings of the IDETC/CIE
,
Montreal, Quebec, Canada
,
Aug. 15–19
,
ASME
, pp.
307
321
.
21.
Liu
,
K.
, and
Jiang
,
L.
,
2011
, “
Bio-inspired Design of Multiscale Structures for Function Integration
,”
Nano Today
,
6
(
2
), pp.
155
175
. 10.1016/j.nantod.2011.02.002
22.
Mak
,
T.
, and
Shu
,
L.
,
2004
, “
Abstraction of Biological Analogies for Design
,”
CIRP Ann.-Manuf. Technol.
,
53
(
1
), pp.
117
120
. 10.1016/S0007-8506(07)60658-1
23.
Bhasin
,
D.
, and
McAdams
,
D. A.
,
2019
, “
Current State of the Art: Problem-Driven Multi-functional Bio-inspired Designs
,”
Proceedings of the IDETC/CIE
,
Anaheim, CA
,
Aug. 18–21, 2019
,
ASME, DETC2019-97455
.
24.
Chakrabarti
,
A.
,
2001
, “
Sharing in Design-Categories, Importance, and Issues
,”
Proceedings of the International Conference on Engineering Design (ICED)
,
Glasgow, UK
,
Aug. 21–23
, Vol.
1
, pp.
21
23
.
25.
Svendsen
,
N.
, and
Lenau
,
T. A.
,
2019
, “
How Does Biologically Inspired Design Cope With Multi-functionality?
,”
Proceedings of the 22nd International Conference on Engineering Design, 2019
,
Delft, The Netherlands
,
Aug. 5–8
,
Cambridge University Press
,
1
(
1
), pp.
349
358
.
26.
Hölttä-Otto
,
K.
, and
De Weck
,
O.
,
2007
, “
Degree of Modularity in Engineering Systems and Products With Technical and Business Constraints
,”
Concurrent Eng.
,
15
(
2
), pp.
113
126
. 10.1177/1063293X07078931
27.
Chakrabarti
,
A.
, and
Singh
,
V.
,
2007
, “
A Method for Structure Sharing to Enhance Resource Effectiveness
,”
J. Eng. Des.
,
18
(
1
), pp.
73
91
. 10.1080/09544820600643766
28.
Chakrabarti
,
A.
,
2004
, “
A New Approach to Structure Sharing
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
1
), pp.
11
19
. 10.1115/1.1683817
29.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J Mech. Des.
,
131
(
8
), p.
081010
. 10.1115/1.3125205
30.
Liu
,
C.
,
Hildre
,
H. P.
,
Zhang
,
H.
, and
Rølvåg
,
T.
,
2016
, “
Product Architecture Design of Multi-modal Products
,”
Res. Eng. Des.
,
27
(
4
), pp.
331
346
. 10.1007/s00163-016-0221-8
31.
Jacobs
,
S. R.
,
Nichol
,
E. C.
, and
Helms
,
M. E.
,
2014
, “
Where Are We Now and Where Are We Going?” The BioM Innovation Database
,”
ASME J Mech. Des.
,
136
(
11
), p.
111101
. 10.1115/1.4028171
32.
Yen
,
J.
,
Weissburg
,
M.
,
Helms
,
M.
, and
Goel
,
A.
,
2011
, “Biologically Inspired Design: A Tool for Interdisciplinary Education,”
Biomimetics: Nature-Based Innovation
,
Y.
Bar Cohen
, ed., Vol.
7
,
Taylor & Francis
,
Boca Raton, FL
.
33.
Bhasin
,
D.
,
McAdams
,
D. A.
, and
Layton
,
A.
,
2020
, “
A Product-Architecture-Based Tool for Bioinspired Function-Sharing
,”
ASME J. Mech Des
.
34.
Davis
,
M. L. T.
,
McAdams
,
D. A.
, and
Wadia
,
A. P.
,
2011
, “
Better Resource Usage Through Biomimetic Symbiotic Principles for Host and Derivative Product Synthesis
,”
Proceedings of the AAAI Spring Symposium Series
,
Palo Alto, CA
,
Mar. 21–23
, pp.
26
33
.
35.
Dong
,
A.
,
2017
, “
Functional Lock-in and the Problem of Design Transformation
,”
Res. Eng. Des.
,
28
(
2
), pp.
203
221
. 10.1007/s00163-016-0234-3
36.
Bhasin
,
D.
, and
McAdams
,
D. A.
,
2020
, “
Fostering Function-Sharing Using Bioinspired Product Architecture
,”
Proceedings of the IDETC/CIE
,
St. Louis, MO
,
Aug. 18–21, 2019
,
ASME, DETC2020-22580
.
37.
Dayrat
,
B.
,
2005
, “
Towards Integrative Taxonomy
,”
Biol. J. Linn. Soc.
,
85
(
3
), pp.
407
417
. 10.1111/j.1095-8312.2005.00503.x
38.
Davidson
,
E. H.
, and
Erwin
,
D. H.
,
2006
, “
Gene Regulatory Networks and the Evolution of Animal Body Plans
,”
Science
,
311
(
5762
), pp.
796
800
. 10.1126/science.1113832
39.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: A Systematic Approach
, Vol.
157
,
Springer Science & Business Media
,
Berlin
.
40.
Kurfman
,
M. A.
,
Rajan
,
J.
,
Stone
,
R. B.
,
Wood
,
K. L.
, and
Stock
,
M. E.
,
2003
, “
Experimental Studies Assessing the Repeatability of a Functional Modeling Derivation Method
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
682
693
. 10.1115/1.1625400
41.
Nagel
,
R. L.
,
Midha
,
P. A.
,
Tinsley
,
A.
,
McAdams
,
D. A.
,
Stone
,
R. B.
, and
Shu
,
L.
,
2008
, “
Exploring the Use of Functional Models in Biomimetic Conceptual Design
,”
ASME J. Mech. Des.
,
130
(
12
), p.
121102
. 10.1115/1.2992062
42.
Online
, “
Encyclopædia Britannica® inc
.,” https://www.britannica.com, Accessed on August 25, 2020.
43.
Hirtz
,
J.
,
Stone
,
R. B.
,
McAdams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
(
2
), pp.
65
82
. 10.1007/s00163-001-0008-3
44.
Sen
,
C.
,
Caldwell
,
B. W.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2010
, “
Evaluation of the Functional Basis Using an Information Theoretic Approach
,”
AI EDAM
,
24
(
1
), pp.
87
105
. 10.1017/s0890060409990187
45.
Chiriac
,
N.
,
Hölttä-Otto
,
K.
,
Lysy
,
D.
, and
Suk Suh
,
E.
,
2011
, “
Level of Modularity and Different Levels of System Granularity
,”
ASME J Mech. Des.
,
133
(
10
), p.
101007
. 10.1115/1.4005069
46.
Bhasin
,
D.
, and
McAdams
,
D. A.
,
2020
, “
Function-Sharing in Organisms
,” https://github.com/dbhasin19/BID-Function-Sharing, Accessed August 25, 2020.
You do not currently have access to this content.