Abstract

The manipulating objects of the micron scale are easily damaged, hence the microgrippers, the key components in micro manipulating systems, demand precise force control, plus miniaturized size. Consequently, the constant force microgrippers, generally lack the ability to fit different sizes. To avoid the overload damage, apply multi-size microparts and simplify the control method, a novel two-stage compliant constant force microgripper is proposed in this paper. Based on the negative stiffness effect, this gripper is connected in parallel with a two-stage negative stiffness module and a positive stiffness module. Then, the elliptic integral method and the pseudo-rigid-body method are both employed to derive the kinetostatic and dynamic performances. Finally, the analytical results are validated. It is observed that two-stage constant forces of 1.33 N in 305.6 μm and 1.11 N in 330.8 μm are acquired.

References

1.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
. 10.1016/j.mechmachtheory.2017.08.017
2.
Verotti
,
M.
,
Dochshanov
,
A.
, and
Belfiore
,
N. P.
,
2017
, “
A Comprehensive Survey on Microgrippers Design: Mechanical Structure
,”
ASME J. Mech. Des.
,
139
(
6
), p.
060801
. 10.1115/1.4036351
3.
Wu
,
Z.
, and
Xu
,
Q.
,
2018
, “
Survey on Recent Designs of Compliant Micro-/Nano-Positioning Stages
,”
Actuators
,
7
(
1
), p.
5
. 10.3390/act7010005
4.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
, p.
103622
. 10.1016/j.mechmachtheory.2019.103622
5.
Qiu
,
C.
, and
Dai
,
J. S.
,
2020
,
Analysis and Synthesis of Compliant Parallel Mechanisms—Screw Theory Approach
,
Springer, Cham
,
Switzerland
, pp.
81
98
.
6.
McClintock
,
H.
,
Temel
,
F. Z.
,
Doshi
,
N.
,
Koh
,
J. S.
, and
Wood
,
R. J.
,
2018
, “
The MilliDelta: A High-Bandwidth, High-Precision, Millimeter-Scale Delta Robot
,”
Sci. Rob.
,
3
(
14
), p.
eaar3018
. 10.1126/scirobotics.aar3018
7.
Dai
,
J.
,
2010
, “
Surgical Robotics and Its Development and Progress
,”
Robotica
,
28
(
2
), pp.
161
161
. 10.1017/S0263574709990877
8.
Feng
,
Z.
,
Liang
,
W.
,
Ling
,
J.
,
Xiao
,
X.
,
Tan
,
K. K.
, and
Lee
,
T. H.
,
2020
, “
Integral Terminal Sliding-Mode-Based Adaptive Integral Backstepping Control for Precision Motion of a Piezoelectric Ultrasonic Motor
,”
Mech. Syst. Sig. Process.
,
144
, p.
106856
. 10.1016/j.ymssp.2020.106856
9.
Ling
,
J.
,
Rakotondrabe
,
M.
,
Feng
,
Z.
,
Ming
,
M.
, and
Xiao
,
X.
,
2019
, “
A Robust Resonant Controller for High-Speed Scanning of Nanopositioners: Design and Implementation
,”
IEEE Trans. Control Syst. Technol.
,
28
(
3
), pp.
1116
1123
. 10.1109/TCST.2019.2899566
10.
Zhang
,
Y.
,
Peng
,
Y.
,
Sun
,
Z.
, and
Yu
,
H.
,
2018
, “
A Novel Stick–Slip Piezoelectric Actuator Based on a Triangular Compliant Driving Mechanism
,”
IEEE Trans. Ind. Electron.
,
66
(
7
), pp.
5374
5382
. 10.1109/TIE.2018.2868274
11.
Ming
,
M.
,
Feng
,
Z.
,
Ling
,
J.
, and
Xiao
,
X.
,
2020
, “
Disturbance Observer-Based Model Prediction Control With Real-Time Modified Reference for a Piezo-Actuated Nanopositioning Stage
,”
Trans. Inst. Meas. Control
,
42
(
4
), pp.
813
822
. 10.1177/0142331219878048
12.
Liu
,
S.
,
Dai
,
J.
,
Li
,
A.
,
Sun
,
Z.
,
Feng
,
S.
, and
Cao
,
G.
,
2016
, “
Analysis of Frequency Characteristics and Sensitivity of Compliant Mechanisms
,”
Chin. J. Mech. Eng.
,
29
(
4
), pp.
680
693
. 10.3901/CJME.2015.1215.148
13.
Lobontiu
,
N.
,
Cullin
,
M.
,
Petersen
,
T.
,
Alcazar
,
J. A.
, and
Noveanu
,
S.
,
2013
, “
Planar Compliances of Symmetric Notch Flexure Hinges: The Right Circularly Corner-Filleted Parabolic Design
,”
IEEE Trans. Autom. Sci. Eng.
,
11
(
1
), pp.
169
176
. 10.1109/TASE.2012.2228853
14.
Kim
,
H.
,
Kim
,
J.
,
Ahn
,
D.
, and
Gweon
,
D.
,
2013
, “
Development of a Nanoprecision 3-DOF Vertical Positioning System With a Flexure Hinge
,”
IEEE Trans. Nanotechnol.
,
12
(
2
), pp.
234
245
. 10.1109/TNANO.2013.2242088
15.
Boudaoud
,
M.
, and
Regnier
,
S.
,
2014
, “
An Overview on Gripping Force Measurement at the Micro and Nano-Scales Using Two-Fingered Microrobotic Systems
,”
Int. J. Adv. Rob. Syst.
,
11
(
3
), p.
45
. 10.5772/57571
16.
Chen
,
W.
,
Qu
,
J.
,
Chen
,
W.
, and
Zhang
,
J.
,
2017
, “
A Compliant Dual-Axis Gripper With Integrated Position and Force Sensing
,”
Mechatronics
,
47
, pp.
105
115
. 10.1016/j.mechatronics.2017.09.005
17.
Xu
,
Q.
,
2018
,
Micromachines for Biological Micromanipulation
,
Springer, Cham
,
Switzerland
, pp.
145
168
.
18.
Komati
,
B.
,
Clévy
,
C.
, and
Lutz
,
P.
,
2016
, “
High Bandwidth Microgripper With Integrated Force Sensors and Position Estimation for the Grasp of Multistiffness Microcomponents
,”
IEEE/ASME Trans. Mechatron.
,
21
(
4
), pp.
2039
2049
. 10.1109/TMECH.2016.2546688
19.
Liu
,
Y.
,
Li
,
D. J.
,
Yu
,
D. P.
,
Miao
,
J. G.
, and
Yao
,
J.
,
2017
, “
Design of a Curved Surface Constant Force Mechanism
,”
Mech. Des. Struct. Mach.
,
45
(
2
), pp.
160
172
. 10.1080/15397734.2016.1157692
20.
Liu
,
Y.
,
Zhang
,
Y.
, and
Xu
,
Q.
,
2017
, “
Design and Control of a Novel Compliant Constant-Force Gripper Based on Buckled Fixed-Guided Beams
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
476
486
. 10.1109/TMECH.2016.2614966
21.
Zhang
,
X.
, and
Xu
,
Q.
,
2019
, “
Design and Analysis of a 2-dof Compliant Gripper With Constant-Force Flexure Mechanism
,”
J. Micro-Bio Rob.
,
15
(
1
), pp.
31
42
. 10.1007/s12213-019-00112-4
22.
Liu
,
Y.
, and
Xu
,
Q.
,
2016
, “
Design and Analysis of a Micro-gripper with Constant Force Mechanism
,”
2016 12th World Congress on Intelligent Control and Automation (WCICA)
,
Guilin, China
,
June 12–15
, pp.
2142
2147
.
23.
Liu
,
Y.
, and
Xu
,
Q.
,
2016
, “
Design of a Compliant Constant Force Gripper Mechanism Based on Buckled Fixed-Guided Beam
,”
2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)
,
Paris, France
,
July 18–22
, pp.
1
6
.
24.
Wang
,
J. Y.
, and
Lan
,
C. C.
,
2014
, “
A Constant-Force Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
. 10.1115/1.4027285
25.
Wang
,
D. A.
, and
Chen
,
J. H.
,
2013
, “
A Constant-Force Bistable Micromechanism
,”
Sens. Actuators, A: Phys.
,
189
, pp.
481
487
. 10.1016/j.sna.2012.10.042
26.
Lan
,
C. C.
,
Wang
,
J. H.
, and
Chen
,
Y. H.
,
2010
, “
A Compliant Constant-Force Mechanism for Adaptive Robot End-Effector Operations
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
2131
2136
.
27.
Chen
,
Y. H.
, and
Lan
,
C. C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
. 10.1115/1.4005865
28.
Kuo
,
Y. L.
,
Huang
,
S. Y.
, and
Lan
,
C. C.
,
2019
, “
Sensorless Force Control of Automated Grinding/Deburring Using An Adjustable Force Regulation Mechanism
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
9489
9495
.
29.
Hao
,
G.
,
Mullins
,
J.
, and
Cronin
,
K.
,
2017
, “
Simplified Modelling and Development of a Bi-Directionally Adjustable Constant-Force Compliant Gripper
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
231
(
11
), pp.
2110
2123
. 10.1177/0954406216628557
30.
Chen
,
C. C.
, and
Lan
,
C. C.
,
2017
, “
An Accurate Force Regulation Mechanism for High-Speed Handling of Fragile Objects Using Pneumatic Grippers
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1600
1608
. 10.1109/TASE.2017.2757527
31.
Zhang
,
X.
,
Wang
,
G.
, and
Xu
,
Q.
,
2018
, “
Design, Analysis and Testing of a New Compliant Compound Constant-Force Mechanism
,”
Actuators
,
7
(
4
), p.
65
. 10.3390/act7040065
32.
Hu
,
J.
, and
Chen
,
X.
,
2018
, “
Optimized Design of A Micro-motion Stage With Zero Stiffness
,”
Opt. Precis. Eng.
,
26
(
6
), pp.
1430
1440
. 10.3788/OPE.20182606.1430
33.
Xu
,
Q.
,
2017
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011006
. 10.1115/1.4035220
34.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
. 10.1115/1.4029024
35.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
. 10.1115/1.4031028
36.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Jiang
,
Z.
,
2018
, “
A Pseudo-Static Model for Dynamic Analysis on Frequency Domain of Distributed Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051011
. 10.1115/1.4040700
37.
Ling
,
M.
,
Cao
,
J.
,
Howell
,
L. L.
, and
Zeng
,
M.
,
2018
, “
Kinetostatic Modeling of Complex Compliant Mechanisms With Serial-Parallel Substructures: A Semi-Analytical Matrix Displacement Method
,”
Mech. Mach. Theory
,
125
, pp.
169
184
. 10.1016/j.mechmachtheory.2018.03.014
38.
Qiu
,
C.
,
Qi
,
P.
,
Liu
,
H.
,
Althoefer
,
K.
, and
Dai
,
J. S.
,
2016
, “
Six-Dimensional Compliance Analysis and Validation of Orthoplanar Springs
,”
ASME J. Mech. Des.
,
138
(
4
), p.
042301
. 10.1115/1.4032580
39.
Yu
,
Y. Q.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Yue
,
Y.
, and
He
,
M. G.
,
2005
, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-body Model
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
760
765
. 10.1115/1.1900750
40.
Venkiteswaran
,
V. K.
, and
Su
,
H. J.
,
2016
, “
Extension Effects in Compliant Joints and Pseudo-Rigid-Body Models
,”
ASME J. Mech. Des.
,
138
(
9
), p.
092302
. 10.1115/1.4034111
41.
Jin
,
M.
,
Yang
,
Z.
,
Ynchausti
,
C.
,
Zhu
,
B.
,
Zhang
,
X.
, and
Howell
,
L. L.
,
2020
, “
Large Deflection Analysis of General Beams in Contact-Aided Compliant Mechanisms Using Chained Pseudo-Rigid-Body Model
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031005
. 10.1115/1.4045425
42.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2011
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
. 10.1115/1.4003922
43.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
. 10.1115/1.4023558
44.
Nejad
,
M. Z.
,
Hadi
,
A.
, and
Rastgoo
,
A.
,
2016
, “
Buckling Analysis of Arbitrary Two-Directional Functionally Graded Euler–Bernoulli Nano-Beams Based on Nonlocal Elasticity Theory
,”
Int. J. Eng. Sci.
,
103
, pp.
1
10
. 10.1016/j.ijengsci.2016.03.001
45.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Chen
,
G.
,
2020
, “
Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey
,”
ASME Appl. Mech. Rev.
,
72
(
3
), p.
030802
. 10.1115/1.4045679
46.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Bi-BCM: A Closed-Form Solution for Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
014501
. 10.1115/1.4035084
You do not currently have access to this content.