Abstract

With the rapid development of new technology and the growing global competition in industry, it is essential for companies to protect their sensitive product designs and technologies. To ensure that their systems are not exploited by potential patent infringers, original equipment manufacturers often apply physical attributes and/or reduce commonality within a product family to prevent easy reusing and recovering. Yet, these design strategies are key barriers to the sustainable recovery and recycling of products. To address these trade-offs, this paper proposes a stepwise methodology to identify the sustainable optimal product family architecture design while protecting intellectual property on sensitive parts or modules. The developed approach notably allows the selection of suitable and sustainable candidates to share among products, taking into account the cost-benefit of commonality within the product family. To demonstrate and test the proposed methodology, a case study is performed with a printer-product family. Environmental savings resulting from the new modular-based architecture obtained for this product family are quantified and discussed.

References

1.
Hashiguchi
,
M. S.
,
2008
, “
Recycling Efforts and Patent Rights Protection in the United States and Japan
,”
Colum. J. Environ. Law
,
33
(
1
), p.
169
.
2.
Gowers
,
A.
,
2006
,
Gowers Review of Intellectual Property
,
The Stationery Office
,
London
.
3.
Krystofik
,
M.
,
Wagner
,
J.
, and
Gaustad
,
G.
,
2015
, “
Leveraging Intellectual Property Rights to Encourage Green Product Design and Remanufacturing for Sustainable Waste Management
,”
Res. Conserv. Recycl.
,
97
, pp.
44
54
.
4.
Henkel
,
J.
,
Baldwin
,
C. Y.
, and
Shih
,
W.
,
2013
, “
IP Modularity: Profiting From Innovation by Aligning Product Architecture With Intellectual Property
,”
California Manage. Rev.
,
55
(
4
), pp.
65
82
.
5.
Rojas Arciniegas
,
A. J.
, and
Kim
,
H. M.
,
2012
, “
Incorporating Security Considerations Into Optimal Product Architecture and Component Sharing Decision in Product Family Design
,”
Eng. Optim.
,
44
(
1
), pp.
55
74
.
6.
Subramanian
,
R.
,
Ferguson
,
M. E.
, and
Beril Toktay
,
L.
,
2013
, “
Remanufacturing and the Component Commonality Decision
,”
Prod. Oper. Manage.
,
22
(
1
), pp.
36
53
.
7.
Tobias
,
S. M.
,
2007
, “
No Refills: The Intellectual Property High Court Decision in Cannon V. Recycle Assist Will Negatively Impact the Printer Ink Cartridge Recycling Industry in Japan
,”
Pac. Rim Law Policy J.
,
16
(
3
), p.
775
.
8.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
9.
Alizon
,
F.
,
Shooter
,
S. B.
, and
Simpson
,
T. W.
,
2006
, “
Improving an Existing Product Family Based on Commonality/Diversity, Modularity, and Cost
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
, Vol.
42584
, pp.
713
725
.
10.
Deng
,
X.
,
Huet
,
G.
,
Tan
,
S.
, and
Fortin
,
C.
,
2012
, “
Product Decomposition Using Design Structure Matrix for Intellectual Property Protection in Supply Chain Outsourcing
,”
Comput. Ind.
,
63
(
6
), pp.
632
641
.
11.
Kim
,
S.
, and
Moon
,
S. K.
,
2019
, “
Eco-modular Product Architecture Identification and Assessment for Product Recovery
,”
J. Intell. Manuf.
,
30
(
1
), pp.
383
403
.
12.
Fixson
,
S. K.
,
2005
, “
Product Architecture Assessment: A Tool to Link Product, Process, and Supply Chain Design Decisions
,”
J. Oper. Manage.
,
23
(
3–4
), pp.
345
369
.
13.
Rojas Arciniegas
,
A. J.
, and
Kim
,
H. M.
,
2011
, “
Optimal Component Sharing in a Product Family by Simultaneous Consideration of Minimum Description Length and Impact Metric
,”
Eng. Optim.
,
43
(
2
), pp.
175
192
.
14.
Yang
,
Q.
,
Yu
,
S.
, and
Jiang
,
D.
,
2014
, “
A Modular Method of Developing an Eco-product Family Considering the Reusability and Recyclability of Customer Products
,”
J. Cleaner Prod.
,
64
, pp.
254
265
.
15.
Shamsuzzoha
,
A.
, and
Helo
,
P.
,
2017
, “
Development of Sustainable Platform for Modular Product Family: A Case Study
,”
Prod. Plan. Control
,
28
(
6–8
), pp.
512
523
.
16.
Simpson
,
T. W.
,
Jiao
,
J.
,
Siddique
,
Z.
, and
Hölttä-Otto
,
K.
,
2014
,
Advances in Product Family and Product Platform Design
,
Springer
,
New York
.
17.
Wang
,
Q.
,
Tang
,
D.
,
Li
,
S.
,
Yang
,
J.
,
Salido
,
M. A.
,
Giret
,
A.
, and
Zhu
,
H.
,
2019
, “
An Optimization Approach for the Coordinated Low-Carbon Design of Product Family and Remanufactured Products
,”
Sustainability
,
11
(
2
), p.
460
.
18.
Yang
,
D.
,
Li
,
J.
,
Wang
,
B.
, and
Jia
,
Y.-J.
,
2020
, “
Module-Based Product Configuration Decisions Considering Both Economical and Carbon Emission-Related Environmental Factors
,”
Sustainability
,
12
(
3
), p.
1145
.
19.
Jiao
,
J. R.
,
Simpson
,
T. W.
, and
Siddique
,
Z.
,
2007
, “
Product Family Design and Platform-Based Product Development: A State-of-the-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
.
20.
Aydin
,
R.
,
Kwong
,
C.
, and
Ji
,
P.
,
2015
, “
A Novel Methodology for Simultaneous Consideration of Remanufactured and New Products in Product Line Design
,”
Int. J. Prod. Econ.
,
169
, pp.
127
140
.
21.
Kwak
,
M.
,
2018
, “
Optimal Line Design of New and Remanufactured Products: A Model for Maximum Profit and Market Share With Environmental Consideration
,”
Sustainability
,
10
(
11
), p.
4283
.
22.
Telenko
,
C.
,
Seepersad
,
C. C.
, and
Webber
,
M. E.
,
2008
, “
A Compilation of Design for Environment Principles and Guidelines
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Brooklyn, NY
,
Aug. 3–6
, Vol.
43291
, pp.
289
301
.
23.
Telenko
,
C.
,
O’Rourke
,
J. M.
,
Conner Seepersad
,
C.
, and
Webber
,
M. E.
,
2016
, “
A Compilation of Design for Environment Guidelines
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031102
.
24.
Kim
,
H.
,
Cluzel
,
F.
,
Leroy
,
Y.
,
Yannou
,
B.
, and
Yannou-Le Bris
,
G.
,
2020
, “
Research Perspectives in Ecodesign
,”
Des. Sci.
,
6
.
25.
Ramani
,
K.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
,
Sutherland
,
J.
,
Handwerker
,
C.
,
Choi
,
J.-K.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Integrated Sustainable Life Cycle Design: A Review
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091004
.
26.
Ma
,
J.
, and
Kremer
,
G. E. O.
,
2015
, “
A Modular Product Design Method to Improve Product Social Sustainability Performance
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
,
American Society of Mechanical Engineers Digital Collection
.
27.
Otto
,
K.
,
Hölttä-Otto
,
K.
,
Simpson
,
T. W.
,
Krause
,
D.
,
Ripperda
,
S.
, and
Ki Moon
,
S.
,
2016
, “
Global Views on Modular Design Research: Linking Alternative Methods to Support Modular Product Family Concept Development
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071101
.
28.
Ma
,
J.
, and
Kremer
,
G. E. O.
,
2016
, “
A Systematic Literature Review of Modular Product Design (MPD) From the Perspective of Sustainability
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1509
1539
.
29.
Simpson
,
T. W.
,
2004
, “
Product Platform Design and Customization: Status and Promise
,”
Ai Edam
,
18
(
1
), pp.
3
20
.
30.
Hölttä-Otto
,
K.
,
Otto
,
K. N.
, and
Simpson
,
T. W.
,
2014
,
Defining Modules for Platforms: An Overview of the Architecting Process
, 1st ed.,
Springer–Verlag
,
New York
, pp.
323
341
.
31.
Kim
,
S.
, and
Moon
,
S. K.
,
2017
, “
Sustainable Platform Identification for Product Family Design
,”
J. Cleaner Prod.
,
143
, pp.
567
581
.
32.
O’Hearn
,
P.
,
Yang
,
H.
, and
Reynolds
,
J.
,
2009
, “
On the Criteria to Be Used in Decomposing Systems Into Modules
,”
ACM Tran. Program. Lang. Syst.
,
31
(
3
), pp.
1
50
.
33.
Zhang
,
D. Y.
,
Zeng
,
Y.
,
Wang
,
L.
,
Li
,
H.
, and
Geng
,
Y.
,
2011
, “
Modeling and Evaluating Information Leakage Caused by Inferences in Supply Chains
,”
Comput. Ind.
,
62
(
3
), pp.
351
363
.
34.
Reuter
,
M. A.
,
van Schaik
,
A.
,
Gutzmer
,
J.
,
Bartie
,
N.
, and
Abadías-Llamas
,
A.
,
2019
, “
Challenges of the Circular Economy: A Material, Metallurgical, and Product Design Perspective
,”
Annu. Rev. Mater. Res.
,
49
, pp.
253
274
.
35.
Reuter
,
M. A.
,
Hudson
,
C.
,
Van Schaik
,
A.
,
Heiskanen
,
K.
,
Meskers
,
C.
, and
Hagelüken
,
C.
,
2013
, “
Metal Recycling: Opportunities, Limits, Infrastructure
,”
A Report of the Working Group on the Global Metal Flows to the International Resource Panel
.
36.
Strawbridge
,
Z.
,
McAdams
,
D. A.
, and
Stone
,
R. B.
,
2002
, “
A Computational Approach to Conceptual Design
,”
ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Sept. 29–Oct. 2
,
American Society of Mechanical Engineers Digital Collection
, pp.
15
25
.
37.
Thebeau
,
R. E.
,
2001
, “
Knowledge Management of System Interfaces and Interactions From Product Development Processes
,”
PhD thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
38.
Wang
,
B.
, and
Antonsson
,
E. K.
,
2005
, “
Hierarchical Modularity: Decomposition of Function Structures With the Minimal Description Length Principle
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, Vol.
4742
, pp.
393
402
.
39.
Yu
,
T.-L.
,
Yassine
,
A. A.
, and
Goldberg
,
D. E.
,
2007
, “
An Information Theoretic Method for Developing Modular Architectures Using Genetic Algorithms
,”
Res. Eng. Des.
,
18
(
2
), pp.
91
109
.
40.
Rojas
,
A. J.
, and
Esterman
,
M.
,
2008
, “
A Measure of Impact for Platform Changes
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Brooklyn, NY
,
Aug. 3–6
,
American Society of Mechanical Engineers Digital Collection
, pp.
323
332
.
41.
Wang
,
B.
, and
Antonsson
,
E. K.
,
2004
, “
Information Measure for Modularity in Engineering Design
,”
ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
,
American Society of Mechanical Engineers Digital Collection
, pp.
449
458
.
42.
Martin
,
M. V.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
,
13
(
4
), pp.
213
235
.
43.
Pollock
,
D.
, and
Coulon
,
R.
,
1996
, “
Life Cycle Assessment of an Inkjet Print Cartridge
,”
Proceedings of the 1996 IEEE International Symposium on Electronics and the Environment. ISEE-1996
,
Dallas, TX
,
May 6–8
,
IEEE
, pp.
154
160
.
44.
Kim
,
J.
,
Saidani
,
M.
, and
Kim
,
H.
,
2020
, “
Optimal Product Family Architecture Design and Commonality Decision for Sustainability and Intellectual Property Protection
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Virtual, Online,
Aug. 17–19
,
American Society of Mechanical Engineers Digital Collection
.
45.
Pre-sustainability
,
2018
, “
SimaPro 8
,” https://www.pre-sustainability.com/simapro
46.
Centre
,
T. E.
,
2018
, “
Ecoinvent
,” https://www.ecoinvent.org/database/database.html
47.
Goedkoop
,
M.
,
Heijungs
,
R.
,
Huijbregts
,
M.
,
De Schryver
,
A.
,
Struijs
,
J.
, and
Van Zelm
,
R.
,
2009
,
A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level
,
Ministry of VROM, ReCiPe
,
The Hague
.
48.
Saidani
,
M.
,
Kim
,
H.
,
Yannou
,
B.
,
Leroy
,
Y.
, and
Cluzel
,
F.
,
2019
, “
Framing Product Circularity Performance for Optimized Green Profit
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
,
American Society of Mechanical Engineers Digital Collection
.
You do not currently have access to this content.