Abstract

This paper presents a singularity study on a special class of spatial cable-suspended parallel mechanisms (CSPMs) with merely three translational degrees of freedom using redundant actuators. This paper focuses on the CSPMs that have the capability to perform the purely translational movement with pairwise cables as parallelograms. There are two types of singularity to be discussed, which result from dynamic equations of CSPMs and the parallelogram constraint of pairwise cables. To ensure three-translational dofs without rotation of the end-effector, the matrix formed by normals of the planes based on each pairwise cables should maintain in full rank. In the case study, four typical designs of CSPMs with a planar end-effector and a spatial end-effector are discussed to clarify and conclude the singularity features of CSPMs with actuation redundancy. The results show that for some architectures there exist both types of singularity for redundantly actuated CSPMs with pairwise cables but for some other architectures the redundant actuation exerts no effect on the singularity issue.

References

1.
Bosscher
,
P.
,
Williams
,
R. L.
,
Bryson
,
L. S.
, and
Lacouture
,
D. C.
,
2007
, “
Cable-Suspended Mechanismic Contour Crafting System
,”
Automat. Constr.
,
17
(
1
), pp.
45
55
. 10.1016/j.autcon.2007.02.011
2.
Kim
,
Y.
,
2017
, “
Anthropomorphic Low-Inertial High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1358
1374
. 10.1109/TRO.2017.2732354
3.
Jin
,
X.
,
Prado
,
A.
, and
Agrawal
,
S. K.
,
2018
, “
Retraining of Human Gait—Are Lightweight Cable-Driven Leg Exoskeleton Designs Effective?
,”
IEEE Trans. Neural. Syst. Rehabil. Eng.
,
26
(
4
), pp.
847
855
. 10.1109/TNSRE.2018.2815656
4.
Barbazza
,
L.
,
Oscari
,
F.
,
Minto
,
S.
, and
Rosati
,
G.
,
2017
, “
Trajectory Planning of a Suspended Cable Driven Parallel Robot with Reconfigurable End Effector
,”
Rob. Compu. Integr. Manuf.
,
48
, pp.
1
11
. 10.1016/j.rcim.2017.02.001
5.
Tang
,
X. Q.
, and
Shao
,
Z. F.
,
2013
, “
Trajecotry Generation and Tracking Control of a Multi-Level Hybrid Support Manipulator in FAST
,”
Mechatronics
,
23
(
8
), pp.
1113
1122
. 10.1016/j.mechatronics.2013.09.002
6.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G.
,
Kurbanhusen
,
M. S.
, et al
,
2006
, “
Force-Closure Workspace Analysis of Cable-Driven Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
1
), pp.
53
69
. 10.1016/j.mechmachtheory.2005.04.003
7.
Gosselin
,
C.
,
Ren
,
P.
, and
Foucault
,
S.
,
2012
, “
Dynamic Trajectory Planning of a Two-dof Cable-Suspended Parallel Robot
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul RiverCentre, MN
,
May 14–18
, pp.
1476
1481
.
8.
Jiang
,
X.
,
Barnett
,
E.
, and
Gosselin
,
C.
,
2018
, “
Periodic Trajectory Planning Beyond the Static Workspace for 6-DOF Cable-Suspended Parallel Robots
,”
IEEE Trans. Rob.
,
34
(
4
), pp.
1128
1140
. 10.1109/TRO.2018.2819668
9.
Jiang
,
X.
, and
Gosselin
,
C.
,
2016
, “
Dynamical Point-to-Point Trajectory Planning of a Three-dof Cable-Suspended Parallel Mechanism
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1550
1557
. 10.1109/TRO.2016.2597315
10.
Shao
,
Z.
,
Li
,
T.
,
Tang
,
X.
,
Tang
,
L.
, et al
,
2018
, “
Research on the Dynamic Trajectory of Spatial Cable-Suspended Parallel Manipulators With Actuation Redundancy
,”
Mechatronics
,
49
, pp.
26
35
. 10.1016/j.mechatronics.2017.11.001
11.
Zhang
,
N.
,
Shang
,
W.
, and
Cong
,
S.
,
2017
, “
Geometry-Based Trajectory Planning of a 3-3 Cable-Suspended Parallel Mechanism
,”
IEEE Trans. Rob.
,
33
(
2
), pp.
484
491
. 10.1109/TRO.2016.2631591
12.
Dion-Gauvin
,
P.
, and
Gosselin
,
C.
,
2018
, “
Dynamic Point-to-Point Trajectory Planning of a Three-dof Cable-Suspended Mechanism Using the Hypocycloid Curve
,”
IEEE/ASME Trans. Mechatronics
,
23
(
4
), pp.
1964
1972
. 10.1109/TMECH.2018.2840051
13.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2006
, “Cable-Based Mechanism Manipulators With Translational Degrees of Freedom,”
Industrial Robotics: Theory Modelling and Control
,
Sam
Cubero
, ed.,
ARS/plV
,
Germany
, pp.
211
236
.
14.
Vu
,
D.
,
Barnett
,
E.
,
Zaccarin
,
A.
, and
Gosselin
,
C.
,
2018
, “On the Design of a Three-DOF Cable-Suspended Parallel Robot Based on a Parallelogram Arrangement of the Cables,”
Cable-Driven Parallel Robots
,
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer
,
New York
, pp.
319
330
.
15.
Gosselin
,
C.
, and
Foucault
,
S.
,
2014
, “
Dynamic Point-to-Point Trajectory Planning of a Two-DOF Cable-Suspended Parallel Mechanism
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
728
736
. 10.1109/TRO.2013.2292451
16.
Tang
,
L.
,
Tang
,
X.
,
Jiang
,
X.
, and
Gosselin
,
C.
,
2015
, “
Dynamic Trajectory Planning Study of Planar two-dof Redundantly Actuated Cable-Suspended Parallel Mechanisms
,”
Mechatronics
,
30
(
1
), pp.
187
197
. 10.1016/j.mechatronics.2015.07.005
17.
Gosselin
,
C.
, and
Grenier
,
M.
,
2011
, “
On the Determination of the Force Distribution in Overconstrained Cable-Driven Parallel Mechanisms
,”
Meccanica
,
46
(
1
), pp.
3
15
. 10.1007/s11012-010-9369-x
18.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
, pp.
496
502
.
19.
Bonev
,
I. A.
,
Zlatanov
,
D.
, and
Gosselin
,
C.
,
2003
, “
Singularity Analysis of 3-dof Planar Parallel Mechanisms via Screw Theory
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
573
581
. 10.1115/1.1582878
20.
Liu
,
G.
,
Lou
,
Y.
, and
Li
,
Z.
,
2013
, “
Singularities of Parallel Manipulators: a Geometric Treatment
,”
IEEE Trans. Rob. Automations
,
19
(
4
), pp.
579
594
.
21.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2019
, “
Dynamically Feasible Motions of a Class of Purely-Translational Cable-Suspended Parallel Robots
,”
Mech. Mach. Theory
,
132
, pp.
193
206
. 10.1016/j.mechmachtheory.2018.10.017
22.
Longval
,
J. M.
, and
Gosselin
,
C.
,
2018
, “
Dynamic Trajectory Planning and Geometric Design of a Two-DOF Translational Cable-Suspended Planar Parallel Robot Using a Parallelogram Cable Loop
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
ASME
Paper No. V05BT07A030, pp.
1
10
.10.1115/DETC2018-85138
23.
Stump
,
E.
, and
Kumar
,
V.
,
2006
, “
Workspaces of Cable-Actuated Parallel Manipulators
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
159
167
. 10.1115/1.2121741
You do not currently have access to this content.