Abstract

Using the topology optimization can be an effective means of synthesizing planar rigid-body linkage mechanisms to generate desired motion, as it does not require a baseline mechanism for a specific topology. While most earlier studies were mainly concerned with the formulation and implementation of topology optimization-based synthesis in a fixed grid, this study aims to realize the simultaneous shape and topology optimization of planar linkage mechanisms using a low-resolution spring-connected rigid block model. Here, we demonstrate the effectiveness of simultaneous optimization over a higher-resolution fixed-grid rigid block-based topology optimization process. When shape optimization to change the block shapes is combined with topology optimization to synthesize the mechanism, the use of low-resolution discretized models improves the computation efficiency considerably and helps to yield compact mechanisms with less complexity, making them more amenable to fabrication. After verifying the effectiveness of the simultaneous shape and topology optimization process with several benchmark problems, we apply the method to synthesize a mechanism which guides a planar version of a human's gait trajectory.

References

1.
Uicker
,
J. J.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
,
2011
,
Theory of Machines and Mechanisms
,
Oxford University Press
,
New York, NY
.
2.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Planar Articulated Mechanism Design by Graph Theoretical Enumeration
,”
Struct. Multidiscip. Optim.
,
27
(
4
), pp.
295
299
. 10.1007/s00158-004-0409-9
3.
Stolpe
,
M.
, and
Kawamoto
,
A.
,
2005
, “
Design of Planar Articulated Mechanisms Using Branch and Bound
,”
Math. Program.
,
103
(
2
), pp.
357
397
. 10.1007/s10107-005-0586-3
4.
Wang
,
H.
,
Yu
,
W.
, and
Chen
,
G.
,
2017
, “
An Approach of Topology Optimization of Multi-Rigid-Body Mechanism
,”
Comput.-Aided Des.
,
84
, pp.
39
55
. 10.1016/j.cad.2016.12.002
5.
Liu
,
Y.
, and
McPhee
,
J.
,
2005
, “
Automated Type Synthesis of Planar Mechanisms Using Numeric Optimization With Genetic Algorithms
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
910
916
. 10.1115/1.1904049
6.
Yoon
,
G. H.
, and
Heo
,
J. C.
,
2012
, “
Constraint Force Design Method for Topology Optimization of Planar Rigid-Body Mechanisms
,”
Comput.-Aided Des.
,
44
(
12
), pp.
1277
1296
. 10.1016/j.cad.2012.07.005
7.
Olivia
,
J. C.
, and
Goodman
,
E. D.
,
2010
, “
Simultaneous Type and Dimensional Synthesis of Planar 1DOF Mechanisms Using Evolutionary Search and Convertible Agents (DETC2009-86722)
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031001
. 10.1115/1.4001733
8.
Heo
,
J. C.
, and
Yoon
,
G. H.
,
2013
, “
Size and Configuration Syntheses of Rigid-Link Mechanisms With Multiple Rotary Actuators Using the Constraint Force Design Method
,”
Mech. Mach. Theory
,
64
, pp.
18
38
. 10.1016/j.mechmachtheory.2013.01.003
9.
Sedlaczek
,
K.
, and
Eberhard
,
P.
,
2009
, “
Topology Optimization of Large Motion Rigid Body Mechanisms With Nonlinear Kinematics
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021011
. 10.1115/1.3079786
10.
Cao
,
L.
,
Dolovich
,
A. T.
,
Schwab
,
A. L.
,
Herder
,
J. L.
, and
Zhang
,
W. C.
,
2015
, “
Toward a Unified Design Approach for Both Compliant Mechanisms and Rigid-Body Mechanisms: Module Optimization
,”
ASME J. Mech. Des.
,
137
(
12
), p.
122301
. 10.1115/1.4031294
11.
Kawamoto
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
, “
Articulated Mechanism Design With a Degree of Freedom Constraint
,”
Int. J. Numer. Methods Eng.
,
61
(
9
), pp.
1520
1545
. 10.1002/nme.1119
12.
Kawamoto
,
A.
,
2005
, “
Path-Generation of Articulated Mechanisms by Shape and Topology Variations in Non-Linear Truss Representation
,”
Int. J. Numer. Methods Eng.
,
64
(
12
), pp.
1557
1574
. 10.1002/nme.1407
13.
Kim
,
Y. Y.
,
Jang
,
G.-W.
,
Park
,
J. H.
,
Hyun
,
J. S.
, and
Nam
,
S. J.
,
2007
, “
Automatic Synthesis of a Planar Linkage Mechanism With Revolute Joints by Using Spring-Connected Rigid Block Models
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
930
940
. 10.1115/1.2747636
14.
Ohsaki
,
M.
, and
Nishiwaki
,
S.
,
2009
, “
Generation of Link Mechanism by Shape-Topology Optimization of Trusses Considering Geometrical Nonlinearity
,”
J. Comput. Sci. Technol.
,
3
(
1
), pp.
46
53
. 10.1299/jcst.3.46
15.
Nam
,
S. J.
,
Jang
,
G.-W.
, and
Kim
,
Y. Y.
,
2012
, “
The Spring-Connected Rigid Block Model Based Automatic Synthesis of Planar Linkage Mechanisms: Numerical Issues and Remedies
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051022
. 10.1115/1.4006266
16.
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2014
, “
Topology Optimization of Planar Linkage Mechanisms
,”
Int. J. Numer. Methods Eng.
,
98
(
4
), pp.
265
286
. 10.1002/nme.4635
17.
Kang
,
S. W.
,
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2016
, “
Topology Optimization of Planar Linkage Systems Involving General Joint Types
,”
Mech. Mach. Theory
,
104
, pp.
130
160
. 10.1016/j.mechmachtheory.2016.05.015
18.
Han
,
S. M.
,
Kim
,
S. I.
, and
Kim
,
Y. Y.
,
2017
, “
Topology Optimization of Planar Linkage Mechanisms for Path Generation Without Prescribed Timing
,”
Struct. Multidiscip. Optim.
,
56
(
3
), pp.
501
517
. 10.1007/s00158-017-1712-6
19.
Kang
,
S. W.
, and
Kim
,
Y. Y.
,
2018
, “
Unified Topology and Joint Types Optimization of General Planar Linkage Mechanisms
,”
Struct. Multidiscip. Optim.
,
57
(
5
), pp.
1955
1983
. 10.1007/s00158-017-1887-x
20.
Kim
,
S. I.
,
Kang
,
S. W.
,
Yi
,
Y.-S.
,
Park
,
J.
, and
Kim
,
Y. Y.
,
2018
, “
Topology Optimization of Vehicle Rear Suspension Mechanisms
,”
Int. J. Numer. Methods Eng.
,
113
(
8
), pp.
1412
1433
. 10.1002/nme.5573
21.
Yim
,
N. H.
,
Kang
,
S. W.
, and
Kim
,
Y. Y.
,
2019
, “
Topology Optimization of Planar Gear-Linkage Mechanisms
,”
ASME J. Mech. Des.
,
141
(
3
), p.
032301
. 10.1115/1.4042212
22.
Kim
,
B. S.
, and
Yoo
,
H. H.
,
2012
, “
Unified Synthesis of a Planar Four-Bar Mechanism for Function Generation Using a Spring-Connected Arbitrarily Sized Block Model
,”
Mech. Mach. Theory
,
49
, pp.
141
156
. 10.1016/j.mechmachtheory.2011.10.013
23.
Kim
,
B. S.
, and
Yoo
,
H. H.
,
2013
, “
Unified Mechanism Synthesis Method of a Planar Four-Bar Linkage for Path Generation Employing a Spring-Connected Arbitrarily Sized Rectangular Block Model
,”
Multibody Syst. Dyn.
,
31
(
3
), pp.
241
256
. 10.1007/s11044-013-9371-x
24.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
25.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
. 10.1115/1.2826242
26.
Pedersen
,
C. B.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
. 10.1002/nme.148
27.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
. 10.1115/1.1333096
28.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
. 10.1016/S0045-7825(00)00278-4
29.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Multiple-Material Topology Optimization of Compliant Mechanisms Created via PolyJet Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061015
. 10.1115/1.4028439
30.
Kwon
,
S.
,
Yi
,
Y. S.
,
Woo
,
S. H.
,
Kim
,
Y. Y.
, and
Kim
,
S. I.
,
2018
, “
Suspension System for Vehicle
” (Application: US 2018/0162443 A1).
31.
Kang
,
S. W.
,
Kim
,
J.
, and
Kim
Y. Y.
,
2019
, “
Finger Rehabilitation Guide Device
” (Application: Korea 10-1948261).
32.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
(
9–10
), pp.
635
654
. 10.1007/s004190050248
33.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
. 10.1002/nme.1620240207
34.
Yun
,
Y.
,
Kim
,
H. C.
,
Shin
,
S. Y.
,
Lee
,
J.
,
Deshpande
,
A. D.
, and
Kim
,
C.
,
2014
, “
Statistical Method for Prediction of Gait Kinematics With Gaussian Process Regression
,”
J. Biomech.
,
47
(
1
), pp.
186
192
. 10.1016/j.jbiomech.2013.09.032
35.
Shin
,
S. Y.
,
Deshpande
,
A. D.
, and
Sulzer
,
J.
,
2018
, “
Design of a Single Degree-of-Freedom, Adaptable Electromechanical Gait Trainer for People With Neurological Injury
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
044503
. 10.1115/1.4039973
You do not currently have access to this content.