This work presents a finite element analysis-based, topology optimization (TO) methodology for the combined magnetostatic and structural design of electrical machine cores. Our methodology uses the Bi-directional Evolutionary Structural Optimization (BESO) heuristics to remove inefficient elements from a meshed model based on elemental energies. The algorithm improves the average torque density while maintaining structural integrity. To the best of our knowledge, this work represents the first effort to address the structural-magnetostatic problem of electrical machine design using a free-form approach. Using a surface-mounted permanent magnet motor (PMM) as a case study, the methodology is first tested on linear and nonlinear two-dimensional problems whereby it is shown that the rapid convergence achieved makes the algorithm suitable for real-world applications. The proposed optimization scheme can be easily extended to three dimensions, and we propose that the resulting designs are suitable for manufacturing using selective laser melting, a 3D printing technology capable of producing fully dense high-silicon steel components with good soft magnetic properties. Three-dimensional TO results show that the weight of a PMM rotor can be slashed by 50% without affecting its rated torque profile when the actual magnetic permeability of the 3D-printed material is considered.

References

1.
Howey
,
D. A.
,
2011
, “
Policy: A Challenging Future for Cars
,”
Nat. Clim. Chang.
,
2
(
1
), pp.
28
29
.
2.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin
.
3.
Lee
,
J.
,
Seo
,
J. H.
, and
Kikuchi
,
N.
,
2010
, “
Topology Optimization of Switched Reluctance Motors for the Desired Torque Profile
,”
Struct. Multidiscip. Optim.
,
42
(
5
), pp.
783
796
.
4.
Dyck
,
D. N.
, and
Lowther
,
D. A.
,
1996
, “
Automated Design of Magnetic Devices by Optimizing Material Distribution
,”
IEEE Trans. Magn.
,
32
(
3
), pp.
1188
1193
.
5.
Kim
,
Y. S.
, and
Park
,
I. H.
,
2010
, “
Topology Optimization of Rotor in Synchronous Reluctance Motor Using Level Set Method and Shape Design Sensitivity
,”
IEEE Trans. Appl. Supercond.
,
20
(
3
), pp.
1093
1096
.
6.
Gangl
,
P.
, and
Langer
,
U.
,
2012
, “
Topology Optimization of Electric Machines Based on Topological Sensitivity Analysis
,”
Comput. Vis. Sci.
,
15
(
6
), pp.
345
354
.
7.
Krings
,
A.
,
Boglietti
,
A.
,
Cavagnino
,
A.
, and
Sprague
,
S.
,
2017
, “
Soft Magnetic Material Status and Trends in Electric Machines
,”
IEEE Trans. Ind. Electron.
,
64
(
3
), pp.
2405
2414
.
8.
Huang
,
X.
, and
Xie
,
Y. M.
,
2010
,
Evolutionary Topology Optimization of Continuum Structures: Methods and Applications
,
Wiley
,
New York, New York
.
9.
Okamoto
,
Y.
,
Akiyama
,
K.
, and
Takahashi
,
N.
,
2006
, “
3-D Topology Optimization of Single-Pole-Type Head by Using Design Sensitivity Analysis
,”
IEEE Trans. Magn.
,
42
(
4
), pp.
1087
1090
.
10.
Garibaldi
,
M.
,
Ashcroft
,
I.
,
Lemke
,
J. N.
,
Simonelli
,
M.
, and
Hague
,
R.
,
2018
, “
Effect of Annealing on the Microstructure and Magnetic Properties of Soft Magnetic Fe-Si Produced via Laser Additive Manufacturing
,”
Scr. Mater.
,
142
, pp.
121
125
.
11.
Kim
,
D.-H.
,
Sykulski
,
J. K.
, and
Lowther
,
D. A.
,
2009
, “
The Implications of the Use of Composite Materials in Electromagnetic Device Topology and Shape Optimization
,”
IEEE Trans. Magn.
,
45
(
3
), pp.
1154
1157
.
12.
Ishikawa
,
T.
,
Nakayama
,
K.
,
Kurita
,
N.
, and
Dawson
,
F. P.
,
2014
, “
Optimization of Rotor Topology in PM Synchronous Motors by Genetic Algorithm Considering Cluster of Materials and Cleaning Procedure
,”
IEEE Trans. Magn.
,
50
(
2
), pp.
637
640
.
13.
Im
,
C.-H.
,
Jung
,
H.-K.
, and
Kim
,
Y.-J.
,
2003
, “
Hybrid Genetic Algorithm for Electromagnetic Topology Optimization
,”
IEEE Trans. Magn.
,
39
(
5
), pp.
2163
2169
.
14.
Lee
,
J.
,
2010
,
Structural Design Optimization of Electric Motors to Improve Torque Performance
, Ph. D. thesis,
University of Michigan
.
15.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
16.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
),
081009
.
17.
Jin-Kyu Byun
,
Song-Yop Hahn
, and
Il-Han Park
,
1999
, “
Topology Optimization of Electrical Devices using Mutual Energy and Sensitivity
,”
IEEE Trans. Magn.
,
35
(
5
), pp.
3718
3720
.
18.
Yang
,
X. Y.
,
Xei
,
Y. M.
,
Steven
,
G. P.
, and
Querin
,
O. M.
,
1999
, “
Bidirectional Evolutionary Method for Stiffness Optimization
,”
AIAA J.
,
37
(
11
), pp.
1483
1488
.
19.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
,
4
(
3–4
), pp.
250
252
.
20.
Zuo
,
Z. H.
, and
Xie
,
Y. M.
,
2015
, “
A Simple and Compact Python Code for Complex 3D Topology Optimization
,”
Adv. Eng. Softw.
,
85
, pp.
1
11
.
21.
Hilzinger
,
R.
, and
Rodewald
,
W.
,
2013
,
Magnetic Materials: Fundamentals, Products, Properties, and Applications
,
Vacuumschmelze
,
Hanau, Germany
.
22.
Bozorth
,
R. M.
, and
IEEE Magnetics Society
,
1993
,
Ferromagnetism
,
IEEE Press
,
New York, NY
.
23.
Chapman
,
S. J.
,
2010
,
Electric Machinery Fundamentals
, Vol.
58
,
McGraw-Hill
,
New York, NY
.
24.
Arora
,
J. S.
,
2011
,
Introduction to Optimum Design
,
Academic Press
,
New York, NY
.
25.
de Kruijf
,
N.
,
Zhou
,
S.
,
Li
,
Q.
, and
Mai
,
Y.-W.
,
2007
, “
Topological Design of Structures and Composite Materials With Multiobjectives
,”
Int. J. Solids Struct.
,
44
(
22–23
), pp.
7092
7109
.
26.
Lee
,
J.
, and
Kikuchi
,
N.
,
2010
, “
Structural Topology Optimization of Electrical Machinery to Maximize Stiffness With Body Force Distribution
,”
IEEE Trans. Magn.
,
46
(
10
), pp.
3790
3794
.
27.
Panesar
,
A.
,
Brackett
,
D.
,
Ashcroft
,
I.
,
Wildman
,
R.
, and
Hague
,
R.
,
2015
, “
Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes
,”
ASME J. Mech. Des.
,
137
(
11
),
111414
.
28.
Deng
,
S.
, and
Suresh
,
K.
,
2017
, “
Topology Optimization Under Thermo-Elastic Buckling
,”
Struct. Multidiscip. Optim.
,
55
(
5
), pp.
1759
1772
.
29.
Deng
,
S.
, and
Suresh
,
K.
,
2017
, “
Stress Constrained Thermo-Elastic Topology Optimization With Varying Temperature Fields via Augmented Topological Sensitivity Based Level-Set
,”
Struct. Multidiscip. Optim.
,
56
(
6
), pp.
1413
1427
.
30.
Deng
,
S.
, and
Suresh
,
K.
,
2015
, “
Multi-Constrained Topology Optimization via the Topological Sensitivity
,”
Struct. Multidiscip. Optim.
,
51
(
5
), pp.
987
1001
.
31.
Stolpe
,
M.
, and
Svanberg
,
K.
,
2001
, “
An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization
,”
Struct. Multidiscip. Optim.
,
22
(
2
), pp.
116
124
.
You do not currently have access to this content.