The steel manufacturing process is characterized by the requirement of expeditious development of high quality products at low cost through the effective use of available resources. Identifying solutions that meet the conflicting commercially imperative goals of such process chains is hard using traditional search techniques. The complexity in such a problem increases due to the presence of a large number of design variables, constraints and bounds, conflicting goals and the complex sequential relationships of the different stages of manufacturing. A classic example of such a manufacturing problem is the design of a rolling system for manufacturing a steel rod. This is a sequential process in which information flows from first rolling stage/pass to the last rolling pass and the decisions made at first pass influence the decisions that are made at the later passes. In this context, we define horizontal integration as the facilitation of information flow from one stage to another thereby establishing the integration of manufacturing stages to realize the end product. In this paper, we present an inverse design method based on well-established empirical models and response surface models developed through simulation experiments (finite-element based) along with the compromise decision support problem (cDSP) construct to support integrated information flow across different stages of a multistage hot rod rolling system. The method is goal-oriented because the design decisions are first made based on the end requirements identified for the process at the last rolling pass and these decisions are then passed to the preceding rolling passes following the sequential order in an inverse manner to design the entire rolling process chain to achieve the horizontal integration of stages. We illustrate the efficacy of the method by carrying out the design of a multistage rolling system. We formulate the cDSP for the second and fourth pass of a four pass rolling chain. The stages are designed by sequentially passing the design information obtained after exercising the cDSP for the last pass for different scenarios and identifying the best combination of design variables that satisfies the conflicting goals. The cDSP for the second pass helps in integrated information flow from fourth to first pass and in meeting specified goals imposed by the fourth and third passes. The end goals identified for this problem for the fourth pass are minimization of ovality (quality) of rod, maximization of throughput (productivity), and minimization of rolling load (performance and cost). The method can be instantiated for other multistage manufacturing processes such as the steel making process chain having several unit operations.

References

1.
Tennyson
,
G.
,
Shukla
,
R.
,
Mangal
,
S.
,
Sachi
,
S.
, and
Singh
,
A. K.
,
2015
, “
ICME for Process Scale-Up: Importance of Vertical and Horizontal Integration of Models
,”
Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME)
,
Wiley
,
Hoboken, NJ
, pp.
11
21
.
2.
Tiwari
,
A.
,
Oduguwa
,
V.
, and
Roy
,
R.
,
2008
, “
Rolling System Design Using Evolutionary Sequential Process Optimization
,”
IEEE Trans. Evol. Comput.
,
12
(
2
), pp.
196
202
.
3.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B.
,
1993
, “
Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
Structural Optimization: Status and Promise
, M. P. Kamat, ed., AIAA, Washington DC., pp.
247
286
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.589.4650&rep=rep1&type=pdf
4.
Reddy
,
R.
,
Smith
,
W. F.
,
Mistree
,
F.
,
Bras
,
B. A.
,
Chen
,
W.
,
Malhotra
,
A.
,
Badhrinath
,
K.
,
Lautenschlager
,
U.
,
Pakala
,
R.
,
Vadde
,
S.
, and
Patel
,
P.
,
1992
, “
DSIDES User Manual
,” Systems Design Laboratory, Department of Mechanical Engineering, University of Houston, Houston, TX, Report No. SDL/REP.7.1/92.
5.
Allen
,
J. K.
,
Seepersad
,
C. C.
,
Choi
,
H.-J.
, and
Mistree
,
F.
,
2006
, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
832
843
.
6.
Oduguwa
,
V.
, and
Roy
,
R.
,
2006
, “
A Review of Rolling System Design Optimisation
,”
Int. J. Mach. Tools Manuf.
,
46
(
7
), pp.
912
928
.
7.
Roy
,
R.
,
Tiwari
,
A.
,
Olivier
,
M.
, and
Graham
,
J.
,
2000
, “
Real-Life Engineering Design Optimisation: Features and Techniques
,”
CDROM Fifth Online World Conference on Soft Computing in Industrial Applications (WSC-5)
,
IEEE
,
Finland
.
8.
Michalewicz
,
Z.
,
1995
, “
A Survey of Constraint Handling Techniques in Evolutionary Computation Methods
,”
4th Annual Conference on Evolutionary Programming
, Vol.
4
, MIT Press, Cambridge, MA, pp.
135
155
.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.9084
9.
Oduguwa
,
V.
,
Tiwari
,
A.
, and
Roy
,
R.
,
2004
, “
Sequential Process Optimisation Using Genetic Algorithms
,”
Parallel Problem Solving From Nature-PPSN VIII
,
Springer
,
Berlin/Heidelberg
, pp.
782
791
.
10.
Oduguwa
,
V.
, and
Roy
,
R.
,
2002
, “
Bi-Level Optimisation Using Genetic Algorithm in Artificial Intelligence Systems
,”
IEEE International Conference
,
IEEE
,
Divnomorskoe, Russia
, pp.
322
327
.
11.
Lapovok
,
R.
, and
Thompson
,
P.
,
1994
, “
The Mathematical Basis of Optimal Roll Pass Design, Engineering Mathematics: The Role of Mathematics in Modern Engineering
,”
Biennial Conference
, pp.
435
444
.
12.
Shin
,
W.
,
1995
, “
Development of Techniques for Pass Design and Optimization in the Rolling of Shapes
,” Ph.D. dissertation, The Ohio State University, Columbus, OH.
13.
Lapovok
,
R.
, and
Thomson
,
P.
,
1997
, “
An Approach to the Optimal Design of Rolling Passes
,”
Int. J. Mach. Tools Manuf.
,
37
(
8
), pp.
1143
1154
.
14.
Jupp
,
S. P.
,
2001
, “
Mathematical Modelling of the Microstructural Evolution During the Hot Rolling of AA5083 Aluminum Alloys
,” Ph.D. dissertation, University of British Columbia, Vancouver, BC, Canada.
15.
Roberts
,
W. L.
,
1983
,
Hot Rolling of Steel
,
CRC Press
,
Boca Raton, FL
.
16.
Oduguwa
,
V.
, and
Roy
,
R.
,
2001
, “
Qualitative and Quantitative Knowledge in Engineering System Design
,”
17th National Conference on Manufacturing Research
,
Cardiff University
,
Cardiff, UK
, pp.
81
86
.
17.
McDowell
,
D. L.
,
Panchal
,
J.
,
Choi
,
H.-J.
,
Seepersad
,
C.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2010
,
Integrated Design of Multiscale, Multifunctional Materials and Products
,
Elsevier
,
New York
.
18.
Ebro
,
M.
, and
Howard
,
T. J.
,
2016
, “
Robust Design Principles for Reducing Variation in Functional Performance
,”
J. Eng. Des.
,
27
(
1–3
), pp.
75
92
.
19.
Bras
,
B.
, and
Mistree
,
F.
,
1993
, “
Robust Design Using Compromise Decision Support Problems
,”
Eng. Optim.
,
21
(
3
), pp.
213
239
.
20.
Taguchi
,
G.
,
1986
, “
Introduction to Quality Engineering
,” Asian Productivity Organization, Distributed by the American Supplier Institute, Dearborn, MI.
21.
Shukla
,
R.
,
Goyal
,
S.
,
Singh
,
A. K.
,
Allen
,
J. K.
,
Panchal
,
J. H.
, and
Mistree
,
F.
,
2014
, “
An Approach to Robust Process Design for Continuous Casting of Slab
,”
ASME
Paper No. DETC2014-34208.
22.
Shukla
,
R.
,
Goyal
,
S.
,
Singh
,
A. K.
,
Panchal
,
J. H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2015
, “
Design Exploration for Determining the Set Points of Continuous Casting Operation: An Industrial Application
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
034503
.
23.
Nellippallil
,
A. B.
,
Song
,
K. N.
,
Goh
,
C.-H.
,
Zagade
,
P.
,
Gautham
,
B. P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2016
, “
A Goal Oriented, Sequential Process Design of a Multi-Stage Hot Rod Rolling System
,”
ASME
Paper No. DETC2016-59402.
24.
Oduguwa
,
V.
, and
Roy
,
R.
,
2002
, “
Multi-Objective Optimisation of Rolling Rod Product Design Using Meta-Modelling Approach
,”
GECCO
, pp.
1164
1171
.https://www.semanticscholar.org/paper/Multi-objective-Optimisation-Of-Rolling-Rod-Oduguwa-Roy/4dfe6b91257d8e3c7e02aba6dfb3f2a6f35a1690
25.
Wusatowski
,
Z.
,
1969
,
Fundamentals of Rolling
,
Pergamon Press
,
Oxford, UK
.
26.
Montgomery
,
D. C.
,
2008
,
Design and Analysis of Experiments
,
Wiley
,
Hoboken, NJ
.
27.
Lee
,
Y.
,
Choi
,
S.
, and
Kim
,
Y.
,
2000
, “
Mathematical Model and Experimental Validation of Surface Profile of a Workpiece in Round–Oval–Round Pass Sequence
,”
J. Mater. Process. Technol.
,
108
(
1
), pp.
87
96
.
28.
Phaniraj
,
M. P.
,
Behera
,
B. B.
, and
Lahiri
,
A. K.
,
2005
, “
Thermo-Mechanical Modeling of Two Phase Rolling and Microstructure Evolution in the Hot Strip Mill: Part I. Prediction of Rolling Loads and Finish Rolling Temperature
,”
J. Mater. Process. Technol.
,
170
(
1
), pp.
323
335
.
29.
Galantucci
,
L.
, and
Tricarico
,
L.
,
1999
, “
Thermo-Mechanical Simulation of a Rolling Process With an FEM Approach
,”
J. Mater. Process. Technol.
,
92–93
, pp.
494
501
.
30.
Lee
,
Y.
,
Choi
,
S.
, and
Hodgson
,
P.
,
2002
, “
Analytical Model of Pass-by-Pass Strain in Rod (or Bar) Rolling and Its Applications to Prediction of Austenite Grain Size
,”
Mater. Sci. Eng.: A
,
336
(
1
), pp.
177
189
.
31.
Nellippallil
,
A. B.
,
De
,
P. S.
,
Gupta
,
A.
,
Goyal
,
S.
, and
Singh
,
A. K.
,
2016
, “
Hot Rolling of a Non-Heat Treatable Aluminum Alloy: Thermo-Mechanical and Microstructure Evolution Model
,”
Trans. Indian Inst. Met.
, (in press).
32.
Goh
,
C. H.
,
Ahmed
,
S.
,
Dachowicz
,
A. P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2014
, “
Integrated Multiscale Robust Design Considering Microstructure Evolution and Material Properties in the Hot Rolling Process
,”
ASME
Paper No. DETC2014-34157.
33.
Montgomery
,
D. C.
, and
Myers
,
R. H.
,
1995
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Meyers
,
R. H.
, and
Montgomery
,
D. C.
, eds.,
Wiley
,
Hoboken, NJ
.
34.
Simpson
,
T. W.
,
Poplinski
,
J. D.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
,
17
(
2
), pp.
129
150
.
35.
Shinokura
,
T.
, and
Takai
,
K.
,
1982
, “
A New Method for Calculating Spread in Rod Rolling
,”
J. Appl. Metalwork.
,
2
(
2
), pp.
94
99
.
36.
Sims
,
R.
,
1954
, “
The Calculation of Roll Force and Torque in Hot Rolling Mills
,”
Proc. Inst. Mech. Eng.
,
168
(
1
), pp.
191
200
.
37.
Said
,
A.
,
Lenard
,
J. G.
,
Ragab
,
A. R.
, and
Elkhier
,
M. A.
,
1999
, “
The Temperature, Roll Force and Roll Torque During Hot Bar Rolling
,”
J. Mater. Process. Technol.
,
88
(
1
), pp.
147
153
.
38.
Pietrzyk
,
M.
,
Cser
,
L.
, and
Lenard
,
J.
,
1999
,
Mathematical and Physical Simulation of the Properties of Hot Rolled Products
,
Elsevier
,
Amsterdam, The Netherlands
.
39.
Sabeghi
,
M.
,
Smith
,
W.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2015
, “
Solution Space Exploration in Model-Based Realization of Engineered Systems
,”
ASME
Paper No. DETC2015-46457.
You do not currently have access to this content.