In this paper, a class of large deployable mechanisms constructed by plane-symmetric Bricard linkages is presented. The plane-symmetric Bricard linkage is a closed-loop overconstrained spatial mechanism composed of six hinge-jointed bars, which has one plane of symmetry during its deployment process. The kinematic analysis of the linkage is presented from the perspectives of geometric conditions, closure equations, and degree-of-freedom. The results illustrate that the linkage has one degree-of-freedom and can be deployed from the folded configuration to one rectangle plane. Therefore, the plane-symmetric Bricard linkage can be used as a basic deployable unit to construct larger deployable mechanisms. Four plane-symmetric Bricard linkages can be assembled into a quadrangular module by sharing the vertical bars of the adjacent units. The module is a multiloop deployable mechanism and has one degree-of-freedom. The singularity analysis of the module is developed, and two methods to avoid singularity are presented. A large deployable mast, deployable plane truss, and deployable ring are built with several plane-symmetric Bricard linkages. The deployment properties of the large deployable mechanisms are analyzed, and computer-aided design models for typical examples are built to illustrate their feasibility and validate the analysis and design methods.

References

1.
Puig
,
L.
,
Barton
,
A.
, and
Rando
,
N.
,
2010
, “
A Review on Large Deployable Structures for Astrophysics Missions
,”
Acta Astronaut.
,
67
(
1
), pp.
12
26
.
2.
Gantes
,
C. J.
,
2001
,
Deployable Structures: Analysis and Design
,
WIT Press
,
Boston, MA
.
3.
Santiago-Prowald
,
J.
, and
Baier
,
H.
,
2013
, “
Advances in Deployable Structures and Surfaces for Large Apertures in Space
,”
CEAS Space J.
,
5
(
3
), pp.
89
115
.
4.
Maden
,
F.
,
Korkmaz
,
K.
, and
Akgün
,
Y.
,
2011
, “
A Review of Planar Scissor Structural Mechanisms: Geometric Principles and Design Methods
,”
Archit. Sci. Rev.
,
54
(
3
), pp.
246
257
.
5.
Akgün
,
Y.
,
Gantes
,
C. J.
,
Sobek
,
W.
,
Korkmaz
,
K.
, and
Kalochairetis
,
K.
,
2011
, “
A Novel Adaptive Spatial Scissor-Hinge Structural Mechanism for Convertible Roofs
,”
Eng. Struct.
,
33
(
4
), pp.
1365
1376
.
6.
Zhao
,
J.
,
Wang
,
J.
,
Chu
,
F.
,
Feng
,
Z.
, and
Dai
,
J.
,
2011
, “
Structure Synthesis and Statics Analysis of a Foldable Stair
,”
Mech. Mach. Theory
,
46
(
7
), pp.
998
1015
.
7.
Faist
,
K. A.
, and
Wiens
,
G. J.
,
2010
, “
Parametric Study on the Use of Hoberman Mechanisms for Reconfigurable Antenna and Solar Arrays
,”
IEEE
International Conference on Aerospace
, Big Sky, MT, Mar. 6–13, 1–8.
8.
Lu
,
S.
,
Zlatanov
,
D.
,
Ding
,
X.
, and
Molfino
,
R.
,
2014
, “
A New Family of Deployable Mechanisms Based on the Hoekens Linkage
,”
Mech. Mach. Theory
,
73
, pp.
130
153
.
9.
Chen
,
Y.
, and
You
,
Z.
,
2005
, “
Mobile Assemblies Based on the Bennett Linkage
,”
Proc. R. Soc. London, Ser. A
,
461
(
2056
), pp.
1229
1245
.
10.
Liu
,
S. Y.
, and
Chen
,
Y.
,
2009
, “
Myard Linkage and Its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
11.
Chen
,
Y.
, and
You
,
Z.
,
2008
, “
An Extended Myard Linkage and Its Derived 6R Linkage
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052301
.
12.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Structures
,
42
(
8
), pp.
2287
2301
.
13.
Bricard
,
R.
,
1897
, “
Mémoire sur la théorie de l'octaedre articulé
,”
J. Math. Pures Appl.
,
3
, pp.
113
148
.
14.
Bricard
,
R.
,
1927
,
Lecons de cinématique, Tome II Cinématique Appliquée
,
Gauthier-Villars
,
Paris
, pp.
7
12
.
15.
Baker
,
J. E.
,
1980
, “
An Analysis of the Bricard Linkages
,”
Mech. Mach. Theory
,
15
(
4
), pp.
267
286
.
16.
Baker
,
J. E.
,
1986
, “
Limiting Positions of a Bricard Linkage and Their Possible Relevance to the Cyclohexane Molecule
,”
Mech. Mach. Theory
,
21
(
3
), pp.
253
260
.
17.
Baker
,
J. E.
,
1997
, “
The Single Screw Reciprocal to the General Plane-symmetric Six-screw Linkage
,”
J. Geom. Graphics
,
1
(
1
), pp.
5
12
.
18.
Chai
,
W. H.
, and
Chen
,
Y.
,
2010
, “
The Line-Symmetric Octahedral Bricard Linkage and Its Structural Closure
,”
Mech. Mach. Theory
,
45
(
5
), pp.
772
779
.
19.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
.
20.
Viquerat
,
A. D.
,
Hutt
,
T.
, and
Guest
,
S. D.
,
2013
, “
A Plane Symmetric 6R Foldable Ring
,”
Mech. Mach. Theory
,
63
, pp.
73
88
.
21.
Deng
,
Z.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031006
.
22.
Huang
,
H.
,
Deng
,
Z.
,
Qi
,
X.
, and
Li
,
B.
,
2013
, “
Virtual Chain Approach for Mobility Analysis of Multiloop Deployable Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111002
.
23.
Huang
,
H.
,
Li
,
B.
,
Zhu
,
J.
, and
Qi
,
X.
,
2016
, “
A New Family of Bricard-Derived Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
034503
.
24.
Qi
,
X.
,
Deng
,
Z.
,
Li
,
B.
,
Liu
,
R.
, and
Guo
,
H.
,
2013
, “
Design and Optimization of Large Deployable Mechanism Constructed by Myard Linkages
,”
CEAS Space J.
,
5
(
3
), pp.
147
155
.
25.
Li
,
B.
,
Qi
,
X.
,
Huang
,
H.
, and
Xu
,
W.
,
2016
, “
Modeling and Analysis of Deployment Dynamics for a Novel Ring Mechanism
,”
Acta Astronaut.
,
120
, pp.
59
74
.
26.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
27.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2013
, “
Geometric Constraint and Mobility Variation of Two 3SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.
28.
Grosch
,
P.
,
Di Gregorio
,
R.
,
López
,
J.
, and
Thomas
,
F.
,
2010
, “
Motion Planning for a Novel Reconfigurable Parallel Manipulator With Lockable Revolute Joints
,”
IEEE
International Conference on Robotics and Automation
, Anchorage, AK, May 3–8, pp.
4697
4702
.
29.
Carbonari
,
L.
, and
Callegari
,
M.
,
2012
, “
The Kinematotropic 3-CPU Parallel Robot: Analysis of Mobility and Reconfigurability Aspects
,”
Latest Advances in Robot Kinematics
,
Springer
,
Dordrecht, The Netherlands
, pp.
373
380
.
30.
Huang
,
H.
, and
Li
,
B.
,
2009
, “
Development of Motion Type Reconfigurable Modular Robot for Multi-Task Application
,”
IEEE
International Conference on Information and Automation
, Zhuhai/Macau, China, June 22–25, pp.
1386
1391
.
You do not currently have access to this content.