Static structural aeroengine components are typically designed for full lifetime operation. Under this assumption, efforts to reduce weight in order to improve the performance result in structural designs that necessitate proven yet expensive manufacturing solutions to ensure high reliability. However, rapid developments in fabrication technologies such as additive manufacturing may offer viable alternatives for manufacturing and/or repair, in which case different component lifing decisions may be preferable. The research presented in this paper proposes a value-maximizing design framework that models and optimizes component lifing decisions in an aeroengine product–service system context by considering manufacturing and maintenance alternatives. To that end, a lifecycle cost model is developed as a proxy of value creation. Component lifing decisions are made to minimize net present value of lifecycle costs. The impact of manufacturing (represented by associated intial defects) and maintenance strategies (repair and/or replace) on lifing design decisions is quantified by means of failure models whose output is an input to the lifecycle cost model. It is shown that, under different conditions, it may not be prudent to design for full life but rather accept shorter life and then repair or replace the component. This is especially evident if volumetric effects on low cycle fatigue life are taken into account. It is possible that failure rates based on legacy engines do not translate necessarily to weight-optimized components. Such an analysis can play a significant supporting role in engine component design in a product–service system context.

References

1.
Sakao
,
T.
, and
Lindahl
,
M.
,
2009
,
Introduction to Product/Service-System Design
,
Springer
,
Berlin
.
2.
Vasantha
,
G. V. A.
,
Roy
,
R.
,
Lelah
,
A.
, and
Brissaud
,
D.
,
2012
, “
A Review of Product–Service Systems Design Methodologies
,”
J. Eng. Des.
,
23
(
9
), pp.
635
659
.
3.
Isaksson
,
O.
,
Larsson
,
T. C.
, and
Öhrwall-Rönnbäck
,
A.
,
2009
, “
Development of Product–Service Systems: Challenges and Opportunities for the Manufacturing Firm
,”
J. Eng. Des.
,
20
(
4
), pp.
329
348
.
4.
Boehm
,
M.
, and
Thomas
,
O.
,
2013
, “
Looking Beyond the Rim of One's Teacup: A Multidisciplinary Literature Review of Product-Service Systems in Information Systems, Business Management, and Engineering and Design
,”
J. Cleaner Prod.
,
51
, pp.
245
260
.
5.
Baines
,
T. S.
,
Lightfoot
,
H. W.
,
Evans
,
S.
,
Neely
,
A.
,
Greenough
,
R.
,
Peppard
,
J.
,
Roy
,
R.
,
Shehab
,
E.
,
Braganza
,
A.
, and
Tiwari
,
A.
,
2007
, “
State-of-the-Art in Product-Service Systems
,”
Proc. Inst. Mech. Eng., Part B
,
221
(
10
), pp.
1543
1552
.
6.
Neely
,
A.
,
2008
, “
Exploring the Financial Consequences of the Servitization of Manufacturing
,”
Oper. Manage. Res.
,
1
(
2
), pp.
103
118
.
7.
Bertoni
,
M.
,
Bertoni
,
A.
,
Isaksson
,
O.
,
Amnell
,
H.
, and
Johansson
,
C.
,
2013
, “
Value-Oriented Concept Selection in Aero-Engine Sub-Systems Design: The Evoke Approach
,” 23rd Annual
INCOSE
International Symposium
, Philadelphia, PA, June 24–27, pp.
770
784
.
8.
Isaksson
,
O.
,
Larsson
,
T. C.
,
Kokkolaras
,
M.
, and
Bertoni
,
M.
,
2013
, “
Simulation Driven Design for Product-Service Systems
,” The Philosopher's Stone for Sustainability: Proceedings of the 4th
CIRP
International Conference on Industrial Product-Service Systems, Y. Shimmura and K. Kimita, eds, Springer-Verlag, Berlin / Heidelberg, pp.
465
470
.
9.
Eres
,
M. H.
,
Bertoni
,
M.
,
Kossmann
,
M.
, and
Scanlan
,
J.
,
2014
, “
Mapping Customer Needs to Engineering Characteristics: An Aerospace Perspective for Conceptual Design
,”
J. Eng. Des.
,
25
(
1–3
), pp.
64
87
.
10.
Cheung
,
J.
,
Scanlan
,
J.
,
Wong
,
J.
,
Forrester
,
J.
,
Eres
,
H.
,
Collopy
,
P.
,
Hollingsworth
,
P.
,
Wiseall
,
S.
, and
Briceno
,
S.
,
2012
, “
Application of Value-Driven Design to Commercial Aeroengine Systems
,”
J. Aircr.
,
49
(
3
), pp.
688
702
.
11.
Wallin
,
J.
,
2013
, “
Developing Capability for Product-Service System Innovation: An Empirical Study in the Aerospace Industry
,”
Ph.D. thesis
,
Chalmers University of Technology
,
Gothenburg, Sweden
.
12.
Shimomura
,
Y.
,
Hara
,
T.
, and
Arai
,
T.
,
2008
, “
A Service Evaluation Method Using Mathematical Methodologies
,”
CIRP Ann. Manuf. Technol.
,
57
(
1
), pp.
437
440
.
13.
Hara
,
T.
,
Arai
,
T.
, and
Shimomura
,
Y.
,
2009
, “
A CAD System for Service Innovation: Integrated Representation of Function, Service Activity, and Product Behaviour
,”
J. Eng. Des.
,
20
(
4
), pp.
367
388
.
14.
Van Ostaeyen
,
J.
,
Kellens
,
K.
,
Van Horenbeek
,
A.
, and
Duflou
,
J. R.
,
2013
, “
Quantifying the Economic Potential of a PSS: Methodology and Case Study
,” The Philosopher's Stone for Sustainability: Proceedings of the 4th
CIRP
International Conference on Industrial Product–Service Systems, Y. Shimmura and K. Kimita, eds., Springer-Verlag, Berlin Heidelberg, Germany, pp.
523
528
.
15.
Kurita
,
Y.
,
Uei
,
K.
,
Kimita
,
K.
, and
Shimomura
,
Y.
,
2013
, “
A Method for Supporting Service Cost Analysis
,” The Philosopher's Stone for Sustainability: Proceedings of the 4th
CIRP
International Conference on Industrial Product–Service Systems, Y. Shimmura and K. Kimita, eds.,
Springer-Verlag
,
Berlin Heidelberg, Germany
, pp.
517
522
.
16.
Arai
,
T.
, and
Shimomura
,
Y.
,
2004
, “
Proposal of Service CAD System—A Tool for Service Engineering
,”
CIRP Ann. Manuf. Technol.
,
53
(
1
), pp.
397
400
.
17.
Gao
,
J.
,
Chen
,
X.
,
Yilmaz
,
O.
, and
Gindy
,
N.
,
2008
, “
An Integrated Adaptive Repair Solution for Complex Aerospace Components Through Geometry Reconstruction
,”
Int. J. Adv. Manuf. Technol.
,
36
(
11
), pp.
1170
1179
.
18.
Denkena
,
B.
,
Boess
,
V.
,
Nespor
,
D.
,
Floeter
,
F.
, and
Rust
,
F.
,
2015
, “
Engine Blade Regeneration: A Literature Review on Common Technologies in Terms of Machining
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5
), pp.
917
924
.
19.
Isaksson
,
O.
,
Kossmann
,
M.
,
Bertoni
,
M.
,
Eres
,
H.
,
Monceaux
,
A.
,
Bertoni
,
A.
,
Wiseall
,
S.
, and
Zhang
,
X.
,
2013
, “
Value-Driven Design: A Methodology to Link Expectations to Technical Requirements in the Extended Enterprise
,”
23rd Annual
INCOSE
International Symposium, Philadelphia, PA, June 24–27, Vol. 1, pp.
171
187
.
20.
Tan
,
Y.
,
Chu
,
X.
,
Zhang
,
Z.
, and
Geng
,
X.
,
2011
, “
Customer Value Optimization in Product Service System Design
,”
Functional Thinking for Value Creation
,
Springer-Verlag
,
Berlin Heidelberg
, pp.
93
98
.
21.
Sakao
,
T.
, and
Lindahl
,
M. S.
,
2012
, “
A Value Based Evaluation Method for Product/Service System Using Design Information
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
51
54
.
22.
Markish
,
J.
, and
Willcox
,
K.
,
2003
, “
Value-Based Multidisciplinary Techniques for Commercial Aircraft System Design
,”
AIAA J.
,
41
(
10
), pp.
2004
2012
.
23.
Collopy
,
P. D.
,
1997
, “
Surplus Value in Propulsion System Design Optimization
,”
AIAA
Paper No. 97-3159.
24.
Lanza
,
G.
,
Behmann
,
B.
,
Werner
,
P.
, and
Vöhringer
,
S.
,
2011
, “
Simulation of Life Cycle Costs of a Product Service System
,”
Functional Thinking for Value Creation
,
Springer-Verlag
,
Berlin Heidelberg
, pp.
159
164
.
25.
Doultsinou
,
A.
,
Roy
,
R.
,
Baxter
,
D.
,
Gao
,
J.
, and
Mann
,
A.
,
2009
, “
Developing a Service Knowledge Reuse Framework for Engineering Design
,”
J. Eng. Des.
,
20
(
4
), pp.
389
411
.
26.
McSorley
,
G.
,
Fortin
,
C.
, and
Huet
,
G.
,
2014
, “
Modified SAPPhIRE Model as a Framework for Product Lifecycle Management
,” DS 77:
DESIGN 2014
,
13th International Design Conference
, pp.
1843
1852
.
27.
Johansson
,
C.
,
Hicks
,
B.
,
Larsson
,
A. C.
, and
Bertoni
,
M.
,
2011
, “
Knowledge Maturity as a Means to Support Decision Making During Product-Service Systems Development Projects in the Aerospace Sector
,”
Project Manage. J.
,
42
(
2
), pp.
32
50
.
28.
Khan
,
K. A.
, and
Houston
,
G. D.
,
1999
, “
Design Optimization Using Life Cycle Cost Analysis for Low Operating Costs
,”
NATO Research and Technology Organization
,
Brussels, Belgium
,
Report No. RTO-MP-037
.
29.
Markish
,
J.
,
2002
, “
Valuation Techniques for Commercial Aircraft Program Design
,”
Master's thesis
,
Massachusetts Institute of Technology
,
Massachusetts Institute of Technology, Boston, MA
.
30.
SAE Aerospace
,
2011
, “
Titanium Alloy Direct Deposited Products
,”
SAE Aerospace
,
Warrendale, PA
, Standard No. AMS4999A.
31.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
32.
Todinov
,
M. T.
,
2006
, “
Equations and a Fast Algorithm for Determining the Probability of Failure Initiated by Flaws
,”
Int. J. Solids Struct.
,
43
(
17
), pp.
5182
5195
.
You do not currently have access to this content.