In the previous reports, analytical target cascading (ATC) is generally applied to product optimization. In this paper, the application area of ATC is expanded to trajectory optimization. Direct collocation method is utilized to convert a trajectory optimization into a nonlinear programing (NLP) problem. The converted NLP is a large-scale problem with sparse matrix of functional dependence table (FDT) suitable for the application of ATC. Three numerical case studies are provided to show the effects of ATC in solving trajectory optimization problems.
Issue Section:
Technical Brief
Keywords:
Decomposition-based design optimization
References
1.
Kober
, J.
, Bagnell
, J. A.
, and Peters
, J.
, 2013
, “Reinforcement Learning in Robotics: A Survey
,” Int. J. Rob. Res.
, 32
(11
), pp. 1238
–1274
.2.
Kulkarni
, T. D.
, Narasimhan
, K. R.
, and Saeedi
, A.
, 2016
, “Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
,” arXiv:1604.06057
.3.
Betts
, J. T.
, 2009
, Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
, Society for Industrial and Applied Mathematics (SIAM) Press,
Philadelphia, PA
.4.
Hull
, D. G.
, 1997
, “Conversion of Optimal Control Problems Into Parameter Optimization Problems
,” J. Guid. Control Dyn.
, 20
(1
), pp. 57
–60
.5.
Dolan
, E. D.
, and More
, J. J.
, 2002
, “Benchmarking Optimization Software With Performance Profiles
,” Math. Program.
, 91
(2
), pp. 201
–213
.6.
Dolan
, E. D.
, More
, J. J.
, and Munson
, T. S.
, 2004
, “Benchmarking Optimization Software With COPS 3.0
,” Argonne National Laboratory, Argonne, IL, Technical Report No. ANL/MCS-TM-273
.7.
Kim
, H. M.
, Rideout
, D. G.
, Papalambros
, P. Y.
, and Stein
, J. L.
, 2003
, “Analytical Target Cascading in Automotive Vehicle Design
,” ASME J. Mech. Des.
, 125
(9
), pp. 481
–489
.8.
Tosserams
, S.
, Kokkolaras
, M.
, Etman
, L. F. P.
, and Rooda
, J. E.
, 2010
, “A Nonhierarchical Formulation of Analytical Target Cascading
,” ASME J. Mech. Des.
, 132
(5
), p. 051002
.9.
Guarneri
, P.
, Gobbi
, M.
, and Papalambros
, P. Y.
, 2011
, “Efficient Multi-Level Design Optimization Using Analytical Target Cascading and Sequential Quadratic Programming
,” Struct. Multidiscip. Optim.
, 44
(3
), pp. 351
–362
.10.
Tedford
, N. P.
, and Martins
, J. R. R. A.
, 2010
, “Benchmarking Multidisciplinary Design Optimization Algorithms
,” Optim. Eng.
, 11
(1
), pp. 159
–183
.11.
Braun
, R.
, 1996
, “Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,” Ph.D. thesis
, Stanford University, Stanford, CA.12.
Kim
, H. M.
, 2001
, “Target Cascading in Optimal System Design
,” Ph.D. dissertation
, University of Michigan, Ann Arbor, MI.13.
Roth
, B. D.
, and Kroo
, I. M.
, 2008
, “Enhanced Collaborative Optimization: A Decomposition-Based Method for Multidisciplinary Design
,” ASME
Paper No. DETC2008-50038. 14.
Tosserams
, S.
, Etman
, L. F. P.
, Papalambros
, P. Y.
, and Rooda
, J. E.
, 2006
, “An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,” Struct. Multidiscip. Optim.
, 31
(3
), pp. 176
–189
.15.
Wang
, W.
, Blouin
, V. Y.
, Gardenghi
, M. K.
, Fadel
, G. M.
, Wiecek
, M. M.
, and Sloop
, B. C.
, 2013
, “Cutting Plane Methods for Analytical Target Cascading With Augmented Lagrangian Coordination
,” ASME J. Mech. Des.
, 135
(10
), p. 104502
.16.
Han
, J.
, and Papalambros
, P. Y.
, 2010
, “A Sequential Linear Programming Coordination Algorithm for Analytical Target Cascading
,” ASME J. Mech. Des.
, 132
(2
), p. 021003
.17.
Li
, X.
, Liu
, C.
, Li
, W.
, and Shang
, H.
, 2013
, “Application of Collaborative Optimization to Optimal Control Problems
,” AIAA J.
, 51
(3
), pp. 745
–750
.18.
Michelena
, N.
, Park
, H.
, and Papalambros
, P. Y.
, 2003
, “Convergence Properties of Analytical Target Cascading
,” AIAA J.
, 41
(5
), pp. 897
–905
.19.
Kang
, N.
, Kokkolaras
, M.
, Papalambros
, P. Y.
, Yoo
, S.
, Na
, W.
, Park
, J.
, and Featherman
, D.
, 2014
, “Optimal Design of Commercial Vehicle Systems Using Analytical Target Cascading
,” Struct. Multidiscip. Optim.
, 50
(6
), pp. 1103
–1114
.20.
Wagner
, T. C.
, 1993
, “A General Decomposition Methodology for Optimal System Design
,” Ph.D. dissertation
, University of Michigan, Ann Arbor, MI.21.
Michalek
, J. J.
, and Papalambros
, P. Y.
, 2005
, “An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading
,” ASME J. Mech. Des.
, 127
(2
), pp. 206
–214
.22.
Dormohammadi
, S.
, and Rais-Rohani
, M.
, 2013
, “Exponential Penalty Function Formulation for Multilevel Optimization Using the Analytical Target Cascading Framework
,” Struct. Multidiscip. Optim.
, 47
(4
), pp. 599
–612
.23.
Yokoyama
, N.
, and Suzuki
, S.
, 2005
, “Modified Genetic Algorithm for Constrained Trajectory Optimization
,” J. Guid. Control Dyn.
, 28
(1
), pp. 139
–144
.Copyright © 2017 by ASME
You do not currently have access to this content.