This study proposes an approach for the acceleration of the experimental gear rolling contact fatigue (RCF) crack formation. By increasing the rotational velocity of a gear pair, the RCF experimental time period is reduced. However, the film thickness is increased to improve the fatigue performance, to counteract which it is proposed to raise the lubricant temperature to reduce the film thickness. A physics-based gear contact fatigue model is used to quantify and offset the effects of the rotational velocity and the lubricant temperature on the crack nucleation.

References

1.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Fatigue Model for Contacts Under Mixed Elastohydrodynamic Lubrication Condition
,”
Int. J. Fatigue
,
33
(
3
), pp.
427
436
.
2.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Physics-Based Model to Predict Micro-Pitting Lives of Lubricated Point Contacts
,”
Int. J. Fatigue
,
47
, pp.
205
215
.
3.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
Micro-Pitting Fatigue Lives of Lubricated Point Contacts: Experiments and Model Validation
,”
Int. J. Fatigue
,
48
, pp.
9
18
.
4.
Li
,
S.
,
Kahraman
,
A.
, and
Klein
,
M.
,
2012
, “
A Fatigue Model for Spur Gear Contacts Operating Under Mixed Elastohydrodynamic Lubrication Conditions
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041007
.
5.
Cheng
,
W.
, and
Cheng
,
H. S.
,
1995
, “
Effect of Surface Roughness Orientation on Pitting Resistance of Lubricated Rollers
,”
Tribol. Trans.
,
38
(
2
), pp.
396
402
.
6.
Li
,
S.
,
2015
, “
A Computational Study on the Influence of Surface Roughness Lay Directionality on Micropitting of Lubricated Point Contacts
,”
ASME J. Tribol.
,
137
(
2
), p.
021401
.
7.
Winter
,
H.
, and
Weiss
,
T.
,
1981
, “
Some Factors Influencing the Pitting, Micro-Pitting (Frosted Areas) and Slow Speed Wear of Surface Hardened Gears
,”
ASME J. Mech. Des.
,
103
(
2
), pp.
499
505
.
8.
Oila
,
A.
, and
Bull
,
S. J.
,
2005
, “
Assessment of the Factors Influencing Micropitting in Rolling/Sliding Contacts
,”
Wear
,
258
(
10
), pp.
1510
1524
.
9.
Hoffmann
,
G.
,
Hanejko
,
F. G.
, and
Slattery
,
R. H.
,
2006
, “
Crack Initiation and Propagation in RCF, a New Approach to Understanding Pitting Failure of Highly Loaded Gears
,”
SAE
Paper No. 2006-01-0383.
10.
Lainé
,
E.
,
Olver
,
A. V.
, and
Beveridge
,
T. A.
,
2008
, “
Effect of Lubricants on Micropitting and Wear
,”
Tribol. Int.
,
41
(
11
), pp.
1049
1055
.
11.
Li
,
S.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Wedeven
,
L. D.
,
2013
, “
A Model to Predict Scuffing Failures of a Ball-On-Disk Contact
,”
Tribol. Int.
,
60
, pp.
233
245
.
12.
Li
,
S.
,
2013
, “
Influence of Surface Roughness Lay Directionality on Scuffing Failure of Lubricated Point Contacts
,”
ASME J. Tribol.
,
135
(
4
), p.
041502
.
13.
Li
,
S.
,
2015
, “
A Thermal Tribo-Dynamic Mechanical Power Loss Model for Spur Gear Pairs
,”
Tribol. Int.
,
88
, pp.
170
178
.
14.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
Influence of Dynamic Behavior on Elastohydrodynamic Lubrication of Spur Gears
,”
J. Eng. Tribol.
,
225
(
8
), pp.
740
753
.
15.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Spur Gear Mesh Interface Damping Model Based on Elastohydrodynamic Contact Behavior
,”
Int. J. Powertrains
,
1
(
1
), pp.
4
21
.
16.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Tribo-Dynamic Model of a Spur Gear Pair
,”
J. Sound Vib.
,
332
(
20
), pp.
4963
4978
.
17.
Li
,
S.
,
2014
, “
A Boundary Element Model for Near Surface Contact Stresses of Rough Surfaces
,”
Comput. Mech.
,
54
(
3
), pp.
833
846
.
18.
Li
,
S.
,
2015
, “
An Investigation on the Influence of Misalignment of Micro-Pitting of a Spur Gear Pair
,”
Tribol. Lett.
,
60
(
3
), p.
35
.
You do not currently have access to this content.