This study proposes an approach for the acceleration of the experimental gear rolling contact fatigue (RCF) crack formation. By increasing the rotational velocity of a gear pair, the RCF experimental time period is reduced. However, the film thickness is increased to improve the fatigue performance, to counteract which it is proposed to raise the lubricant temperature to reduce the film thickness. A physics-based gear contact fatigue model is used to quantify and offset the effects of the rotational velocity and the lubricant temperature on the crack nucleation.
Issue Section:
Technical Brief
References
1.
Li
, S.
, and Kahraman
, A.
, 2011
, “A Fatigue Model for Contacts Under Mixed Elastohydrodynamic Lubrication Condition
,” Int. J. Fatigue
, 33
(3
), pp. 427
–436
.2.
Li
, S.
, and Kahraman
, A.
, 2013
, “A Physics-Based Model to Predict Micro-Pitting Lives of Lubricated Point Contacts
,” Int. J. Fatigue
, 47
, pp. 205
–215
.3.
Li
, S.
, and Kahraman
, A.
, 2013
, “Micro-Pitting Fatigue Lives of Lubricated Point Contacts: Experiments and Model Validation
,” Int. J. Fatigue
, 48
, pp. 9
–18
.4.
Li
, S.
, Kahraman
, A.
, and Klein
, M.
, 2012
, “A Fatigue Model for Spur Gear Contacts Operating Under Mixed Elastohydrodynamic Lubrication Conditions
,” ASME J. Mech. Des.
, 134
(4
), p. 041007
.5.
Cheng
, W.
, and Cheng
, H. S.
, 1995
, “Effect of Surface Roughness Orientation on Pitting Resistance of Lubricated Rollers
,” Tribol. Trans.
, 38
(2
), pp. 396
–402
.6.
Li
, S.
, 2015
, “A Computational Study on the Influence of Surface Roughness Lay Directionality on Micropitting of Lubricated Point Contacts
,” ASME J. Tribol.
, 137
(2
), p. 021401
.7.
Winter
, H.
, and Weiss
, T.
, 1981
, “Some Factors Influencing the Pitting, Micro-Pitting (Frosted Areas) and Slow Speed Wear of Surface Hardened Gears
,” ASME J. Mech. Des.
, 103
(2
), pp. 499
–505
.8.
Oila
, A.
, and Bull
, S. J.
, 2005
, “Assessment of the Factors Influencing Micropitting in Rolling/Sliding Contacts
,” Wear
, 258
(10
), pp. 1510
–1524
.9.
Hoffmann
, G.
, Hanejko
, F. G.
, and Slattery
, R. H.
, 2006
, “Crack Initiation and Propagation in RCF, a New Approach to Understanding Pitting Failure of Highly Loaded Gears
,” SAE
Paper No. 2006-01-0383.10.
Lainé
, E.
, Olver
, A. V.
, and Beveridge
, T. A.
, 2008
, “Effect of Lubricants on Micropitting and Wear
,” Tribol. Int.
, 41
(11
), pp. 1049
–1055
.11.
Li
, S.
, Kahraman
, A.
, Anderson
, N. E.
, and Wedeven
, L. D.
, 2013
, “A Model to Predict Scuffing Failures of a Ball-On-Disk Contact
,” Tribol. Int.
, 60
, pp. 233
–245
.12.
Li
, S.
, 2013
, “Influence of Surface Roughness Lay Directionality on Scuffing Failure of Lubricated Point Contacts
,” ASME J. Tribol.
, 135
(4
), p. 041502
.13.
Li
, S.
, 2015
, “A Thermal Tribo-Dynamic Mechanical Power Loss Model for Spur Gear Pairs
,” Tribol. Int.
, 88
, pp. 170
–178
.14.
Li
, S.
, and Kahraman
, A.
, 2011
, “Influence of Dynamic Behavior on Elastohydrodynamic Lubrication of Spur Gears
,” J. Eng. Tribol.
, 225
(8
), pp. 740
–753
.15.
Li
, S.
, and Kahraman
, A.
, 2011
, “A Spur Gear Mesh Interface Damping Model Based on Elastohydrodynamic Contact Behavior
,” Int. J. Powertrains
, 1
(1
), pp. 4
–21
.16.
Li
, S.
, and Kahraman
, A.
, 2013
, “A Tribo-Dynamic Model of a Spur Gear Pair
,” J. Sound Vib.
, 332
(20
), pp. 4963
–4978
.17.
Li
, S.
, 2014
, “A Boundary Element Model for Near Surface Contact Stresses of Rough Surfaces
,” Comput. Mech.
, 54
(3
), pp. 833
–846
.18.
Li
, S.
, 2015
, “An Investigation on the Influence of Misalignment of Micro-Pitting of a Spur Gear Pair
,” Tribol. Lett.
, 60
(3
), p. 35
.Copyright © 2016 by ASME
You do not currently have access to this content.