Local synthesis establishes a relationship between the relative motion and the local geometry properties of gear and pinion surfaces at one single (mean) point. Theoretically, local synthesis design of spiral bevel and hypoid gears cannot ensure the contact performance along the entire contact point path (CPP) resulting in uncontrolled contact ellipses with different sizes and unavoidable transmission errors (TEs). Based on local synthesis, tooth contact analysis (TCA) and third-order contact analysis provide supplementary methods for improvement but still cannot directly control the entire CPP. A global synthesis approach is proposed to directly design the entire CPP by which it is possible to design each instantaneous contact ellipse (ICE) for load capacity and to achieve any function of TEs. A detailed implementation based on a free-form five-axis machine is presented in which the machine settings are obtained by definite relative position and motion between the tool and the workpiece at every instant. An example and the results obtained from the authors’ implementation are also provided for illustration and validation and show better control of contact ellipses and remarkable reduction of TEs to near zero.

References

1.
Baxter
,
M. L.
,
1974
, “
Second Order Surface Generation
,”
Ind. Math.
,
23
(
2
), pp.
85
106
.
2.
Litvin
,
F. L.
, and
Zhang
,
Y.
,
1991
, “
Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears
,” NASA Contractor Report No. 4342.
3.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
, 2nd ed.,
Cambridge University Press
,
New York.
4.
Baxter
,
M. L.
,
1961
, “
Basic Geometry and Tooth Contact of Hypoid Gears
,”
Ind. Math.
,
11
(
2
), pp.
19
42
.
5.
Fan
,
Q.
, and
Wilcox
,
L.
,
2007
, “
New Developments in Tooth Contact Analysis (TCA) and Loaded TCA for Spiral Bevel and Hypoid Gear Drives
,”
Gear Technol.
,
24
(
3
), pp.
26
35
.
6.
Wang
,
X. C.
, and
Ghosh
,
S. K.
,
1994
,
Advanced Theories of Hypoid Gears
,
Elsevier
,
Amsterdam, The Netherlands
.
7.
Karagiannis
,
I.
,
Theodossiades
,
S.
, and
Rahnejat
,
H.
,
2012
, “
On the Dynamics of Lubricated Hypoid Gears
,”
Mech. Mach. Theory
,
48
, pp.
94
120
.
8.
Karagiannis
,
I.
, and
Theodossiades
,
S.
,
2014
, “
An Alternative Formulation of the Dynamic Transmission Error to Study the Oscillations of Automotive Hypoid Gears
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011001
.
9.
Tang
,
J.
,
Hu
,
Z.
,
Wu
,
L.
, and
Chen
,
S.
,
2013
, “
Effect of Static Transmission Error on Dynamic Responses of Spiral Bevel Gears
,”
J. Cent. South Univ.
,
20
(
3
), pp.
640
647
.
10.
Stadtfeld
,
H. J.
, and
Gaiser
,
U.
,
2000
, “
The Ultimate Motion Graph
,”
ASME J. Mech. Des.
,
122
(
3
), pp.
317
322
.
11.
Wang
,
P. Y.
, and
Fong
,
Z. H.
,
2006
, “
Fourth-Order Kinematic Synthesis for Face-Milling Spiral Bevel Gears With Modified Radial Motion (MRM) Correction
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
457
467
.
12.
de Vaujany
,
J.
,
Guingand
,
M.
,
Remond
,
D.
, and
Icard
,
Y.
,
2007
, “
Numerical and Experimental Study of the Loaded Transmission Error of a Spiral Bevel Gear
,”
ASME J. Mech. Des.
,
129
(
2
), pp.
195
200
.
13.
Kolivand
,
M.
, and
Kahraman
,
A.
,
2009
, “
A Load Distribution Model for Hypoid Gears Using Ease-Off Topography and Shell Theory
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1848
1865
.
14.
Artoni
,
A.
,
Kolivand
,
M.
, and
Kahraman
,
A.
,
2010
, “
An Ease-Off Based Optimization of the Loaded Transmission Error of Hypoid Gears
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011010
.
15.
Su
,
J.
,
Fang
,
Z.
, and
Cai
,
X.
,
2013
, “
Design and Analysis of Spiral Bevel Gears With Seventh-Order Function of Transmission Error
,”
Chin. J. Aeronaut.
,
26
(
5
), pp.
1310
1316
.
16.
Astoul
,
J.
,
Mermoz
,
E.
,
Sartor
,
M.
,
Linares
,
J. M.
, and
Bernard
,
A.
,
2014
, “
New Methodology to Reduce the Transmission Error of the Spiral Bevel Gears
,”
CIRP Ann.-Manuf. Technol.
,
63
(
1
), pp.
165
168
.
17.
Simon
,
V.
,
2009
, “
Head-Cutter for Optimal Tooth Modifications in Spiral Bevel Gears
,”
Mech. Mach. Theory
,
44
(
7
), pp.
1420
1435
.
18.
Simon
,
V. V.
,
2009
, “
Design and Manufacture of Spiral Bevel Gears With Reduced Transmission Errors
,”
ASME J. Mech. Des.
,
131
(
4
), p.
041007
.
19.
Simon
,
V. V.
,
2011
, “
Generation of Hypoid Gears on CNC Hypoid Generator
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121003
.
20.
Simon
,
V.
,
2013
, “
Design of Face-Hobbed Spiral Bevel Gears With Reduced Maximum Tooth Contact Pressure and Transmission Errors
,”
Chin. J. Aeronaut.
,
26
(
3
), pp.
777
790
.
21.
Simon
,
V. V.
,
2014
, “
Optimization of Face-Hobbed Hypoid Gears
,”
Mech. Mach. Theory
,
77
, pp.
164
181
.
22.
Simon
,
V. V.
,
2014
, “
Manufacture of Optimized Face-Hobbed Spiral Bevel Gears on Computer Numerical Control Hypoid Generator
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031008
.
23.
Simon
,
V. V.
,
2014
, “
Optimal Machine-Tool Settings for the Manufacture of Face-Hobbed Spiral Bevel Gears
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081004
.
24.
Bracci
,
A.
,
Gabiccini
,
M.
,
Artoni
,
A.
, and
Guiggiani
,
M.
,
2009
, “
Geometric Contact Pattern Estimation for Gear Drives
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
2
), pp.
1563
1571
.
25.
Kawasaki
,
K.
, and
Tsuji
,
I.
,
2010
, “
Analytical and Experimental Tooth Contact Pattern of Large-Sized Spiral Bevel Gears in Cyclo-Palloid System
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041004
.
26.
Gabiccini
,
M.
,
Bracci
,
A.
, and
Guiggiani
,
M.
,
2010
, “
Robust Optimization of the Loaded Contact Pattern in Hypoid Gears With Uncertain Misalignments
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041010
.
27.
Artoni
,
A.
,
Bracci
,
A.
,
Gabiccini
,
M.
, and
Guiggiani
,
M.
,
2009
, “
Optimization of the Loaded Contact Pattern in Hypoid Gears by Automatic Topography Modification
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011008
.
28.
Artoni
,
A.
,
Gabiccini
,
M.
,
Guiggiani
,
M.
, and
Kahraman
,
A.
,
2011
, “
Multi-Objective Ease-Off Optimization of Hypoid Gears for Their Efficiency, Noise, and Durability Performances
,”
ASME J. Mech. Des.
,
133
(
12
), p.
121007
.
29.
Wu
,
X. C.
,
Mao
,
S. M.
, and
Wu
,
X. T.
,
2000
, “
Study on the Function-Oriented Design of Point-Contact Tooth Surfaces
,”
Chin. J. Mech. Eng.
,
36
(
4
), pp.
70
73
(in Chinese).
30.
Zhou
,
K.
, and
Tang
,
J.
,
2011
, “
Envelope-Approximation Theory of Manufacture Technology for Point-Contact Tooth Surface on Six-Axis CNC Hypoid Generator
,”
Mech. Mach. Theory
,
46
(
6
), pp.
806
819
.
31.
Cao
,
X.
,
Fang
,
Z.
,
Xu
,
H.
, and
Su
,
J.
,
2008
, “
Design of Pinion Machine Tool-Settings for Spiral Bevel Gears by Controlling Contact Path and Transmission Errors
,”
Chin. J. Aeronaut.
,
21
(
2
), pp.
179
186
.
32.
Simon
,
V. V.
,
2010
, “
Advanced Manufacture of Spiral Bevel Gears on CNC Hypoid Generating Machine
,”
ASME J. Mech. Des.
,
132
(
3
), p.
031001
.
33.
Gabiccini
,
M.
,
Bracci
,
A.
, and
Battaglia
,
E.
,
2011
, “
On the Estimation of Continuous Mappings From Cradle-Style to 6-Axis Machines for Face-Milled Hypoid Gear Generation
,”
Mech. Mach. Theory
,
46
(
10
), pp.
1492
1506
.
34.
Shih
,
Y.
,
2010
, “
A Novel Ease-Off Flank Modification Methodology for Spiral Bevel and Hypoid Gears
,”
Mech. Mach. Theory
,
45
(
8
), pp.
1108
1124
.
35.
Shih
,
Y.
, and
Fong
,
Z.
,
2008
, “
Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Generator
,”
ASME J. Mech. Des.
,
130
(
6
), p.
062604
.
36.
Litvin
,
F. L.
,
Chen
,
J.
,
Sep
,
T. M.
, and
Wang
,
J.
,
1995
, “
Computerized Simulation of Transmission Errors and Shift of Bearing Contact for Face-Milled Hypoid Gear Drive
,”
ASME J. Mech. Des.
,
117
(
2A
), pp.
262
268
.
37.
Litvin
,
F. L.
,
Tsung
,
W.
,
Coy
,
J. J.
, and
Heine
,
C.
,
1987
, “
Method for Generation of Spiral Bevel Gears With Conjugate Gear Tooth Surfaces
,”
ASME J. Mech. Des.
,
109
(
2
), pp.
163
170
.
38.
Wang
,
P.
, and
Zhang
,
Y.
,
2013
, “
An Invariant Approach for Curvature Analysis of Conjugate Surfaces
,”
Mech. Mach. Theory
,
64
, pp.
175
199
.
39.
Shih
,
Y.
, and
Fong
,
Z.
,
2007
, “
Flank Modification Methodology for Face-Hobbing Hypoid Gears Based on Ease-Off Topography
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1294
1302
.
40.
Kolivand
,
M.
, and
Kahraman
,
A.
,
2010
, “
An Ease-Off Based Method for Loaded Tooth Contact Analysis of Hypoid Gears Having Local and Global Surface Deviations
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071004
.
41.
Artoni
,
A.
,
Gabiccini
,
M.
, and
Kolivand
,
M.
,
2013
, “
Ease-Off Based Compensation of Tooth Surface Deviations for Spiral Bevel and Hypoid Gears: Only the Pinion Needs Corrections
,”
Mech. Mach. Theory
,
61
, pp.
84
101
.
42.
Fan
,
Q.
,
2011
, “
Optimization of Face Cone Element for Spiral Bevel and Hypoid Gears
,”
ASME J. Mech. Des.
,
133
(
9
), p.
091002
.
43.
Fan
,
Q.
,
2006
, “
Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1315
1327
.
You do not currently have access to this content.