While modern computer aided design (CAD) systems currently offer tools for generating simple patterns, such as uniformly spaced rectangular or radial patterns, these tools are limited in several ways: (1) They cannot be applied to free-form geometries used in industrial design, (2) patterning of these features happens within a single working plane and is not applicable to highly curved surfaces, and (3) created features lack anisotropy and spatial variations, such as changes in the size and orientation of geometric features within a given region. In this paper, we introduce a novel approach for creating anisotropic patterns of geometric features on free-form surfaces. Complex patterns are generated automatically, such that they conform to the boundary of any specified target region. Furthermore, user input of a small number of geometric features (called “seed features”) of desired size and orientation in preferred locations could be specified within the target domain. These geometric seed features are then transformed into tensors and used as boundary conditions to generate a Riemannian metric tensor field. A form of Laplace's heat equation is used to produce the field over the target domain, subject to specified boundary conditions. The field represents the anisotropic pattern of geometric features. This procedure is implemented as an add-on for a commercial CAD package to add geometric features to a target region of a three-dimensional model using two set operations: union and subtraction. This method facilitates the creation of a complex pattern of hundreds of geometric features in less than 5 min. All the features are accessible from the CAD system, and if required, they are manipulable individually by the user.

References

1.
Itoh
,
T.
,
Miyata
,
K.
, and
Shimada
,
K.
,
2003
, “
Generating Organic Textures With Controlled Anisotropy and Directionality
,”
IEEE Comput. Graph. Appl.
,
23
(
3
), pp.
38
45
.
2.
Shimada
,
K.
,
Yamada
,
A.
, and
Itoh
,
T.
,
2000
, “
Anisotropic Triangulation of Parametric Surfaces Via Close Packing of Ellipsoids
,”
Int. J. Comput. Geom. Appl.
,
10
, pp.
417
440
.
3.
Vyas
,
V.
, and
Shimada
,
K.
,
2009
, “
Tensor-Guided Hex-Dominant Mesh Generation With Targeted All-Hex Regions
,”
18th International Meshing Roundtable
, pp.
377
396
.
4.
Yamakawa
,
S.
, and
Shimada
,
K.
,
2000
, “
High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing
,”
9th International Meshing Roundtable (IMR)
, pp.
263
274
.
5.
Andrade
,
D. F.
, and
Shimada
,
K.
, “
Automatic Generation of a Pattern of Geometric Features for Industrial Design
,”
ASME J. Mech. Des.
,
135
(
11
), p.
115001
.
6.
Shimada
,
K.
,
1993
, “
Physically-Based Mesh Generation: Automated Triangulation of Surfaces and Volumes Via Bubble Packing
,” Ph. D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
7.
Shimada
,
K.
, and
Gossard
,
D. C.
,
1995
, “
Bubble Mesh: Automated Triangular Meshing of Non-Manifold Geometry by Sphere Packing
,” Third
ACM
Symposium on Solid Modeling and Applications
, pp.
409
419
.
8.
Boring
,
E.
, and
Pang
,
A.
,
1998
, “
Interactive Deformations From Tensor Fields
,”
Conference on Visualization'98
, pp.
297
304
.
9.
Bossen
,
F. J.
, and
Heckbert
,
P. S.
,
1996
, “
A Pliant Method for Anisotropic Mesh Generation
,”
5th International Meshing Roundtable
, pp.
63
74
.
10.
Frey
,
P.-J.
, and
Alauzet
,
F.
,
2005
, “
Anisotropic Mesh Adaptation for CFD Computations
,”
Comput. Methods Appl. Mech. Eng.
,
194
, pp.
5068
5082
.
11.
Głut
,
B.
, and
Jurczyk
,
T.
,
2005
, “
Definition and Interpolation of Discrete Metric for Mesh Generation on 3D Surfaces
,”
Comput. Sci.
,
7
, pp.
89
103
.
12.
Hotz
,
I.
,
Feng
,
L.
,
Hagen
,
H.
,
Hamann
,
B.
,
Joy
,
K.
, and
Jeremic
,
B.
,
2004
, “
Physically Based Methods for Tensor Field Visualization
,”
IEEE Visualization
,
2004
, pp.
123
130
.
13.
Huang
,
W.
,
2005
, “
Metric Tensors for Anisotropic Mesh Generation
,”
J. Comput. Phys.
,
204
(
2
), pp.
633
665
.
14.
Kolda
,
T. G.
, and
Bader
,
B. W.
,
2009
, “
Tensor Decompositions and Applications
,”
SIAM Rev.
,
51
(
3
), pp.
455
500
.
15.
Obermaier
,
H.
, and
Joy
,
K. I.
,
2012
, “
Derived Metric Tensors for Flow Surface Visualization
,”
IEEE Trans. Visual. Comput. Graph.
,
18
(
12
), pp.
2149
2158
.
16.
Tchon
,
K.-F.
,
Dompierre
,
J.
,
Vallet
,
M.-G.
,
Guibault
,
F.
, and
Camarero
,
R.
,
2006
, “
Two-Dimensional Metric Tensor Visualization Using Pseudo-Meshes
,”
Eng. Comput.
,
22
(
2
), pp.
121
131
.
17.
Turk
,
G.
,
1991
, “
Generating Textures on Arbitrary Surfaces Using Reaction-Diffusion
,”
18th Annual Conference on Computer Graphics and Interactive Techniques
, Vol.
25
,
ACM
,
New York
, pp.
289
298
.
18.
Palacios
,
J.
, and
Zhang
,
E.
,
2007
, “
Rotational Symmetry Field Design on Surfaces
,”
ACM Trans. Graph.
,
26
(
3
), p.
55
.
19.
Saad
,
Y.
,
2003
,
Iterative Methods for Sparse Linear Systems
,
SIAM
,
Philadelphia, PA
.
20.
Shimada
,
K.
, and
Gossard
,
D. C.
,
1998
, “
Automatic Triangular Mesh Generation of Trimmed Parametric Surfaces for Finite Element Analysis
,”
Comput. Aided Geom. Des.
,
15
(
3
), pp.
199
222
.
21.
Wu
,
L.
,
Chen
,
B.
, and
Zhou
,
G.
,
2010
, “
An Improved Bubble Packing Method for Unstructured Grid Generation With Application to Computational Fluid Dynamics
,”
Numer. Heat Transfer, Part B
,
58
(
5
), pp.
343
369
.
22.
Bhat
,
P.
,
Ingram
,
S.
, and
Turk
,
G.
,
2004
, “
Geometric Texture Synthesis by Example
,” 2004 Eurographics/ACM
SIGGRAPH
Symposium on Geometry Processing
, pp.
41
44
.
23.
Wei
,
L.-Y.
, and
Levoy
,
M.
,
2000
, “
Fast Texture Synthesis Using Tree-Structured Vector Quantization
,”
27th Annual Conference on Computer Graphics and Interactive Techniques
, pp.
479
488
.
24.
Ying
,
L.
,
Hertzmann
,
A.
,
Biermann
,
H.
, and
Zorin
,
D.
,
2001
, “
Texture and Shape Synthesis on Surfaces
,”
Rendering Techniques 2001
,
Springer
,
Heidelberg
, pp.
301
312
.
25.
Efros
,
A. A.
, and
Freeman
,
W. T.
,
2001
, “
Image Quilting for Texture Synthesis and Transfer
,”
28th Annual Conference on Computer Graphics and Interactive Techniques
, pp.
341
346
.
26.
Fleischer
,
K. W.
,
Laidlaw
,
D. H.
,
Currin
,
B. L.
, and
Barr
,
A. H.
,
1995
, “
Cellular Texture Generation
,”
22nd Annual Conference on Computer Graphics and Interactive Techniques
, pp.
239
248
.
27.
Witkin
,
A.
, and
Kass
,
M.
,
1991
, “
Reaction-Diffusion Textures
,”
ACM SIGGRAPH Comput. Graph.
,
25
(
4
), pp.
299
308
.
28.
Zheng
,
X.
,
Parlett
,
B. N.
, and
Pang
,
A.
,
2005
, “
Topological Lines in 3D Tensor Fields and Discriminant Hessian Factorization
,”
IEEE Trans. Visual. Comput. Graph.
,
11
(
4
), pp.
395
407
.
29.
Nieser
,
M.
,
Palacios
,
J.
,
Polthier
,
K.
, and
Zhang
,
E.
,
2012
, “
Hexagonal Global Parameterization of Arbitrary Surfaces
,”
IEEE Trans. Visual. Comput. Graphics
,
18
(6), pp. 865–878.
You do not currently have access to this content.