The Atlantic razor clam, Ensis directus, burrows underwater by expanding and contracting its valves to fluidize the surrounding soil. Its digging method uses an order of magnitude less energy than would be needed to push the clam directly into soil, which could be useful in applications such as anchoring and sensor placement. This paper presents the theoretical basis for the timescales necessary to achieve such efficient digging and gives design parameters for a device to move at these timescales. It then uses RoboClam, a robot designed to imitate the razor clam's movements, to test the design rules. It was found that the minimum contraction time is the most critical timescale for efficient digging and that efficient expansion times vary more widely. The results of this paper can be used as design rules for other robot architectures for efficient digging, optimized for the size scale and soil type of the application.

References

1.
Winter
, V,
A. G.
,
Deits
,
R.
, and
Hosoi
,
A. E.
,
2012
, “
Localized Fluidization Burrowing Mechanics of Ensis Directus
,”
J. Exp. Biol.
,
215
(
12
), pp.
2072
2080
.
2.
Terzaghi
,
K.
,
Peck
,
R.
, and
Mesri
,
G.
,
1996
,
Soil Mechanics in Engineering Practice
, 3rd, ed.,
Wiley
,
New York
.
3.
Robertson
,
P. K.
, and
Campanella
,
R. G.
,
1983
, “
Interpretation of Cone Penetration Tests. Part I: Sand
,”
Can. Geotech. J.
,
20
(
4
), pp.
718
733
.
4.
Trueman
,
E.
,
1975
,
The Locomotion of Soft-Bodied Animals
,
Edward Arnold
,
London
.
5.
Rosenberg
,
R.
, and
Ringdahl
,
K.
,
2005
, “
Quantification of Biogenic 3-D Structures in Marine Sediments
,”
J. Exp. Mar. Biol. Ecol.
,
326
(
1
), pp.
67
76
.
6.
Trueman
,
E.
,
1966
, “
The Dynamics of Burrowing of Some Common Littoral Bivalves
,”
J. Exp. Biol.
,
44
, pp.
469
492
.
7.
Dorgan
,
K. M.
,
Jumars
,
P. A.
,
Johnson
,
B.
,
Boudreau
,
B. P.
, and
Landis
,
E.
,
2005
, “
Burrowing Mechanics: Burrow Extension by Crack Propagation
,”
Nature
,
433
(
7025
), pp.
475
475
.
8.
Aoyama
,
J.
,
Shinoda
,
A.
,
Sasai
,
S.
,
Miller
,
M. J.
, and
Tsukamoto
,
K.
,
2005
, “
First Observations of the Burrows of Anguilla Japonica
,”
J. Fish Biol.
,
67
(
6
), pp.
1534
1543
.
9.
Atkinson
,
R. J. A.
,
Pelster
,
B.
,
Bridges
,
C. R.
,
Taylor
,
A. C.
, and
Morris
,
S.
,
1987
, “
Behavioral and Physiological Adaptations to a Burrowing Lifestyle in the Snake Blenny, Lumpenus Lampretaeformis, and the Red Band-Fish, Cepola Rubescens
,”
J. Fish Biol.
,
31
(
5
), pp.
639
659
.
10.
Wallace
,
H. R.
,
1968
, “
The Dynamics of Nematode Movement
,”
Ann. Rev. Pathol.
,
6
, pp.
91
114
.
11.
Jung
,
S.
,
2010
, “
Caenorhabditis Elegans Swimming in a Saturated Particulate System
,”
Phys. Fluids
,
22
, p. 031903.
12.
Winter
,
V, A. G.
,
Deits
,
R.
, and
Dorsch
,
D.
,
2013
, “
Critical Timescales for Burrowing in Undersea Substrates Via Localized Fluidization, Demonstrated by RoboClam: A Robot Inspired by Atlantic Razor Clams
,”
ASME
Paper No. DETC2013-12798, pp. V06AT07A007.
13.
Trueman
,
E. R.
,
1966
, “
Bivalve Mollusks: Fluid Dynamics of Burrowing
,”
Science
,
152
(
3721
), pp.
523
525
.
14.
Trueman
,
E. R.
,
1967
, “
The Dynamics of Burrowing in Ensis (bivalvia)
,”
Proc. R. Soc. London B Biol. Sci.
,
166
(
1005
), pp.
459
476
.
15.
Winter
,
V, A. G.
,
Deits
,
R.
,
Dorsch
,
D.
,
Slocum
,
A.
, and
Hosoi
,
A. E.
,
2014
, “
Razor Clam to RoboClam: Burrowing Drag Reduction Mechanisms and Their Robotic Adaptation
,”
Bioinspiration Biomimetics
,
9
(
3
), pp.
4
5
.
16.
Holland
,
A. F.
, and
Dean
,
J. M.
,
1977
, “
The Biology of the Stout Razor Clamtagelus Plebeius: I. Animal-Sediment Relationships, Feeding Mechanism, and Community Biology
,”
Chesapeake Sci.
,
18
(
1
), pp.
58
66
.
17.
Energizer Battery Company
,
2009
, “
Energizer E91 AA Battery Product Datasheet
,” Energizer Holdings, Inc., St. Louis, MO.
18.
Winter
,
V, A. G.
,
2008
, “
Drag Reduction Mechanisms Employed by Burrowing Razor Clams (Ensis Directus)
,” 61st Annual Meeting of the American Physical Society Division of Fluid Dynamics, San Antonio, TX, Nov. 23, 2008.
19.
Winter
, V,
A. G.
, and
Hosoi
,
A. E.
,
2011
, “
Identification and Evaluation of the Atlantic Razor Clam (Ensis Directus)
,”
Integr. Comp. Biol.
,
51
(
1
), pp.
151
157
.
20.
Kundu
,
P.
, and
Cohen
,
I.
,
2004
,
Fluid Mechanics
, 3rd, ed.,
Elsevier Academic Press
,
San Diego, CA
.
21.
Lambe
,
T.
, and
Whitman
,
R.
,
1969
,
Soil Mechanics
,
Wiley
,
New York
.
22.
Slocum
,
A.
,
1992
,
Precision Machine Design
,
Society of Manufacturing Engineers
, Dearborn, MI.
23.
Avallone
,
E. A.
, and
Baumeister
,
T.
, III
,
1996
,
Marks' Standard Handbook for Mechanical Engineers
, 10th, ed.,
McGraw-Hill
,
New York
.
24.
Winter
,
V, A. G.
,
Hosoi
,
A. E.
,
Slocum
,
A.
, and
Dorsch
,
D.
,
2009
, “
The Design and Testing of RoboClam A Machine Used to Investigate and Optimize Razor Clam-Inspired Burrowing Mechanisms for Engineering Applications
,”
ASME
Paper No. DETC2009-86808, pp. 721–726.
25.
Richardson
,
J.
, and
Zaki
,
W.
,
1954
, “
Sedimentation and Fluidization: Part I
,”
Chem. Eng. Res. Des.
,
32
(
a
), pp.
35
53
.
26.
Khan
,
A.
, and
Richardson
,
J.
,
1989
, “
Fluid-Particle Interactions and Flow Characteristics of Fluidized Beds and Settling Suspensions of Spherical Particles
,”
Chem. Eng. Commun.
,
78
(
1
), pp.
111
130
.
27.
Wen
,
C.
, and
Yu
,
Y.
,
1966
, “
Mechanics of Fluidization
,”
Chem. Eng. Prog. Symp. Ser.
,
62
, pp.
100
111
.
You do not currently have access to this content.