This paper investigates dimensional optimization of a 2-UPR-RPU parallel manipulator (where U is a universal joint, P a prismatic pair, and R a revolute pair). First, the kinematics and screws of the mechanism are analyzed. Then, three indices developed from motion/force transmission are proposed to evaluate the performance of the 2-UPR-RPU parallel manipulator. Based on the performance atlases obtained, a set of optimal parameters are selected from the optimum region within the parameter design space. Finally, the optimized parameters are determined for practical applications.
Issue Section:
Technical Brief
References
1.
Gosselin
, C.
, and Angeles
, J.
, 1989
, “The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator
,” ASME J. Mech. Des.
, 111
(2
), pp. 202
–207
.10.1115/1.32589842.
Gosselin
, C.
, and Angeles
, J.
, 1991
, “A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,” ASME J. Mech. Des.
, 113
(3
), pp. 220
–226
.10.1115/1.29127723.
Yoshikawa
, T.
, 1985
, “Manipulability of Robotic Mechanisms
,” Int. J. Rob. Res.
, 4
(2
), pp. 3
–9
.10.1177/0278364985004002014.
Zanganeh
, K. E.
, and Angeles
, J.
, 1997
, “Kinematic Isotropy and the Optimum Design of Parallel Manipulators
,” Int. J. Rob. Res.
, 16
(2
), pp. 185
–197
.10.1177/0278364997016002055.
Carretero
, J.
, Podhorodeski
, R.
, Nahon
, M.
, and Gosselin
, C. M.
, 2000
, “Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator
,” ASME J. Mech. Des.
, 122
(1
), pp. 17
–24
.10.1115/1.5335426.
Badescu
, M.
, and Mavroidis
, C.
, 2004
, “Workspace Optimization of 3-Legged UPU and UPS Parallel Platforms With Joint Constraints
,” ASME J. Mech. Des.
, 126
(2
), pp. 291
–300
.10.1115/1.16679227.
Merlet
, J. P.
, 2005
, “Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,” ASME J. Mech. Des.
, 128
(1
), pp. 199
–206
.10.1115/1.21217408.
Tandirci
, M.
, Angeles
, J.
, and Ranjbaran
, F.
, 1992
, “The Characteristic Point and the Characteristic Length of Robotic Manipulators
,” Proceedings of the ASME 22nd Biennial Mechanisms Conference Robotics, Spatial Mechanisms and Mechanical Systems
, Scotsdale, AZ
, Vol. 45
, pp. 203
–208
.9.
Pond
, G.
, and Carretero
, J. A.
, 2006
, “Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,” Mech. Mach. Theory
, 41
(12
), pp. 1505
–1519
.10.1016/j.mechmachtheory.2006.01.00310.
Altuzarra
, O.
, Salgado
, O.
, Petuya
, V.
, and Hernández
, A.
, 2006
, “Point-Based Jacobian Formulation for Computational Kinematics of Manipulators
,” Mech. Mach. Theory
, 41
(12
), pp. 1407
–1423
.10.1016/j.mechmachtheory.2006.01.01111.
Sutherland
, G.
, and Roth
, B. A.
, 1973
, “Transmission Index for Spatial Mechanisms
,” J. Eng. Ind.
, 95
(2
), pp. 589
–597
.10.1115/1.343819512.
Tsai
, M. J.
, and Lee
, H. W.
, 1994
, “The Transmissivity and Manipulability of Spatial Mechanisms
,” ASME J. Mech. Des.
, 116
(1
), pp. 137
–143
.10.1115/1.291933713.
Chen
, C.
, and Angeles
, J.
, 2007
, “Generalized Transmission Index and Transmission Quality for Spatial Linkages
,” Mech. Mach. Theory
, 42
(9
), pp. 1225
–1237
.10.1016/j.mechmachtheory.2006.08.00114.
Liu
, X. J.
, Wang
, L. P.
, Xie
, F. G.
, and Bonev
, I. A.
, 2010
, “Design of a Three-Axis Articulated Tool Head With Parallel Kinematics Achieving Desired Motion/Force Transmission Characteristics
,” ASME J. Manuf. Sci. Eng.
, 132
(2
), p. 021009
.10.1115/1.400124415.
Li
, Q.
, and Herve
, J. M.
, 2014
, “Type Synthesis of 3-DOF RPR-Equivalent Parallel Mechanisms
,” IEEE Trans. Rob.
, 30
(6
), pp. 1333
–1343
.10.1109/TRO.2014.2344450Copyright © 2015 by ASME
You do not currently have access to this content.