Time-dependent reliability analysis requires the use of the extreme value of a response. The extreme value function is usually highly nonlinear, and traditional reliability methods, such as the first order reliability method (FORM), may produce large errors. The solution to this problem is using a surrogate model of the extreme response. The objective of this work is to improve the efficiency of building such a surrogate model. A mixed efficient global optimization (m-EGO) method is proposed. Different from the current EGO method, which draws samples of random variables and time independently, the m-EGO method draws samples for the two types of samples simultaneously. The m-EGO method employs the adaptive Kriging–Monte Carlo simulation (AK–MCS) so that high accuracy is also achieved. Then, Monte Carlo simulation (MCS) is applied to calculate the time-dependent reliability based on the surrogate model. Good accuracy and efficiency of the m-EGO method are demonstrated by three examples.

References

1.
Du
,
X.
, and
Hu
,
Z.
,
2012
, “
First Order Reliability Method With Truncated Random Variables
,”
ASME J. Mech. Des.
,
134
(
9
), p.
091005
.10.1115/1.4007150
2.
Zhang
,
J.
, and
Du
,
X.
,
2010
, “
A Second-Order Reliability Method With First-Order Efficiency
,”
ASME J. Mech. Des.
,
132
(
10
), p.
101006
.10.1115/1.4002459
3.
Li
,
J.
,
Mourelatos
,
Z.
, and
Singh
,
A.
,
2012
, “
Optimal Preventive Maintenance Schedule Based on Lifecycle Cost and Time-Dependent Reliability
,”
SAE Int. J. Mater. Manuf.
,
5
(
1
), pp.
87
95
.10.4271/2012-01-0070
4.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Li
,
J.
,
2010
, “
Design for Lifecycle Cost Using Time-Dependent Reliability
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091008
.10.1115/1.4002200
5.
Singh
,
A.
,
Mourelatos
,
Z. P.
, and
Nikolaidis
,
E.
,
2011
, “
An Importance Sampling Approach for Time-Dependent Reliability
,”
ASME
Paper No. DETC2011-47200.10.1115/DETC2011-47200
6.
Rice
,
S. O.
,
1945
, “
Mathematical Analysis of Random Noise
,”
Bell Syst.Tech. J.
,
24
(
1
), pp.
146
156
.
7.
Lindgren
,
G.
,
1984
, “
Extremal Ranks and Transformation of Variables or Extremes of Functions of Multivariate Gaussian Processes
,”
Stochastic Process Appl.
,
17
(
2
), pp.
285
312
.10.1016/0304-4149(84)90006-1
8.
Breitung
,
K.
,
1984
, “
Asymptotic Crossing Rates for Stationary Gaussian Vector Processes
,” Department of Mathematics and Statistics, University of Lund, Lund, Sweden, Technical Report No. 1.
9.
Breitung
,
K.
,
1988
, “
Asymptotic Crossing Rates for Stationary Gaussian Vector Processes
,”
Stochastic Process Appl.
,
13
(
2
), pp.
195
207
.10.1016/0304-4149(88)90037-3
10.
Ditlevsen
,
O.
,
1983
, “
Gaussian Outcrossings From Safe Convex Polyhedrons
,”
J. Eng. Mech.
,
109
(
1
), pp.
127
148
.10.1061/(ASCE)0733-9399(1983)109:1(127)
11.
Hagen
,
O.
, and
Tvedt
,
L.
,
1991
, “
Vector Process Out-Crossing as Parallel System Sensitivity Measure
,”
J. Eng. Mech.
,
117
(
10
), pp.
2201
2220
.10.1061/(ASCE)0733-9399(1991)117:10(2201)
12.
Hagen
,
O.
, and
Tvedt
,
L.
,
1992
, “
Parallel System Approach for Vector Out-Crossing
,”
ASME J. Offshore Mech. Arct. Eng.
,
114
(
2
), pp.
122
128
.10.1115/1.2919959
13.
Andrieu-Renaud
,
C.
,
Sudret
,
B.
, and
Lemaire
,
M.
,
2004
, “
The PHI2 Method: A Way to Compute Time-Variant Reliability
,”
Reliab. Eng. Syst. Saf.
,
84
(
1
), pp.
75
86
.10.1016/j.ress.2003.10.005
14.
Hu
,
Z.
, and
Du
,
X.
,
2012
, “
Reliability Analysis for Hydrokinetic Turbine Blades
,”
Renewable Energy
,
48
(
1
), pp.
251
262
.10.1016/j.renene.2012.05.002
15.
Vanmarcke
,
E. H.
,
1975
, “
On the Distribution of the First-Passage Time for Normal Stationary Random Processes
,”
ASME J. Appl. Mech.
,
42
(
1
), pp.
215
220
.10.1115/1.3423521
16.
Madsen
,
P. H.
, and
Krenk
,
S.
,
1984
, “
Integral Equation Method for the First-Passage Problem in Random Vibration
,”
ASME J. Appl. Mech.
,
51
(
3
), pp.
674
679
.10.1115/1.3167691
17.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
Time-Dependent Reliability Analysis With Joint Upcrossing Rates
,”
Struct. Multidiscip. Optim.
,
48
(
5
), pp.
893
907
.10.1007/s00158-013-0937-2
18.
Hu
,
Z.
,
Li
,
H.
,
Du
,
X.
, and
Chandrashekhara
,
K.
,
2012
, “
Simulation-Based Time-Dependent Reliability Analysis for Composite Hydrokinetic Turbine Blades
,”
Struct. Multidiscip. Optim.
,
47
(
5
), pp.
765
781
.10.1007/s00158-012-0839-8
19.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2007
, “
Multimodal Reliability Assessment for Complex Engineering Applications Using Efficient Global Optimization
,”
AIAA
Paper No. AIAA-2007-1946.10.2514/6.AIAA-2007-1946
20.
Wang
,
Z.
, and
Wang
,
P.
,
2012
, “
A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121007
.10.1115/1.4007931
21.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.10.1023/A:1008306431147
22.
Chen
,
J. B.
, and
Li
,
J.
,
2007
, “
The Extreme Value Distribution and Dynamic Reliability Analysis of Nonlinear Structures With Uncertain Parameters
,”
Struct. Saf.
,
29
(
2
), pp.
77
93
.10.1016/j.strusafe.2006.02.002
23.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK–MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.10.1016/j.strusafe.2011.01.002
24.
Hu
,
Z.
, and
Du
,
X.
,
2013
, “
A Sampling Approach to Extreme Value Distribution for Time-Dependent Reliability Analysis
,”
ASME J. Mech. Des.
,
135
(
7
), p.
071003
.10.1115/1.4023925
25.
Hu
,
Z.
, and
Du
,
X.
,
2014
, “
Lifetime Cost Optimization With Time-Dependent Reliability
,”
Eng. Optim.
,
46
(
10
), pp.
1389
1410
.10.1080/0305215X.2013.841905
26.
Grogan
,
J. A.
,
Leen
,
S. B.
, and
Mchugh
,
P. E.
,
2013
, “
Optimizing the Design of a Bioabsorbable Metal Stent Using Computer Simulation Methods
,”
Biomaterials
,
34
(
33
), pp.
8049
8060
.10.1016/j.biomaterials.2013.07.010
27.
Lockwood
,
B.
, and
Mavriplis
,
D.
,
2013
, “
Gradient-Based Methods for Uncertainty Quantification in Hypersonic Flows
,”
Comput. Fluids
,
85
(
1
), pp.
27
38
.10.1016/j.compfluid.2012.09.003
28.
Raghavan
,
B.
, and
Breitkopf
,
P.
,
2013
, “
Asynchronous Evolutionary Shape Optimization Based on High-Quality Surrogates: Application to an Air-Conditioning Duct
,”
Eng. Comput.
,
29
(
4
), pp.
467
476
.10.1007/s00366-012-0263-0
29.
Steponaviče
,
I.
,
Ruuska
,
S.
, and
Miettinen
,
K.
,
2014
, “
A Solution Process for Simulation-Based Multiobjective Design Optimization With an Application in the Paper Industry
,”
Comput. Aided Des.
,
47
, pp.
45
58
.10.1016/j.cad.2013.08.045
30.
Lophaven
;,
S. N.
,
Nielsen
;,
H. B.
, and
Søndergaard
,
J.
,
2002
, “
DACE—A Matlab Kriging Toolbox
,” Technical University of Denmark, Lyngby, Denmark.
31.
Chen
,
W.
,
Tsui
,
K.-L.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1995
, “
Integration of the Response Surface Methodology With the Compromise Decision Support Problem in Developing a General Robust Design Procedure
,”
1995 ASME Design Engineering Technical Conference
, pp.
485
492
.
32.
Hosder
,
S.
,
Walters
,
R. W.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables
,”
48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Honolulu, HI, Apr. 23–25, pp.
2946
2961
.
33.
Bichon
,
B. J.
,
Eldred
,
M. S.
,
Swiler
,
L. P.
,
Mahadevan
,
S.
, and
McFarland
,
J. M.
,
2008
, “
Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
,”
AIAA J.
,
46
(
10
), pp.
2459
2468
.10.2514/1.34321
34.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.10.1115/1.4026033
35.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
33
, pp.
47
57
.10.1016/j.probengmech.2013.02.002
36.
Basudhar
,
A.
, and
Missoum
,
S.
,
2008
, “
Adaptive Explicit Decision Functions for Probabilistic Design and Optimization Using Support Vector Machines
,”
Comput. Struct.
,
86
(
19
), pp.
1904
1917
.10.1016/j.compstruc.2008.02.008
37.
Basudhar
,
A.
,
Missoum
,
S.
, and
Harrison Sanchez
,
A.
,
2008
, “
Limit State Function Identification Using Support Vector Machines for Discontinuous Responses and Disjoint Failure Domains
,”
Prob. Eng. Mech.
,
23
(
1
), pp.
1
11
.10.1016/j.probengmech.2007.08.004
38.
Basudhar
,
A.
, and
Missoum
,
S.
,
2010
, “
An Improved Adaptive Sampling Scheme for the Construction of Explicit Boundaries
,”
Struct. Multidiscip. Optim.
,
42
(
4
), pp.
517
529
.10.1007/s00158-010-0511-0
39.
Zhang
,
J.
, and
Du
,
X.
,
2011
, “
Time-Dependent Reliability Analysis for Function Generator Mechanisms
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031005
.10.1115/1.4003539
40.
Zang
,
C.
,
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
2005
, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
,
83
(
4–5
), pp.
315
326
.10.1016/j.compstruc.2004.10.007
41.
Li
,
C.-C.
, and
Der Kiureghian
,
A.
,
1993
, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
.10.1061/(ASCE)0733-9399(1993)119:6(1136)
You do not currently have access to this content.