System design tools including simulation and component optimization are an increasingly important component of the vehicle design process, placing more emphasis on early stages of design to reduce redesign and enable more robust design. This study focuses on the energy use and power management simulations used in vehicle design and optimization. Vehicle performance is most often evaluated in simulation, physical testing, and certification using drive cycle cases (also known as dynamometer schedules or drive schedules). In vehicle optimization studies, the information included in each drive cycle has been shown to influence the attributes of the optimized vehicle, and including more drive cycles in simulation optimizations has been shown to improve the robustness of the optimized design. This paper aims to quantitatively understand the effect of drive cycles on optimization in vehicle design and to specify drive cycles that can lead to robust vehicle design with minimal simulation. Two investigations are performed in service of this objective; investigation 1 tests how different combinations of drive cycles affect optimized vehicle performance and design variables (DV); investigation 2 evaluates the use of stochastic drive cycles for improving the robustness of vehicle designs without adding computational cost to the design and optimization process.

References

1.
Fairley
,
R. E.
, and
Thayer
,
R. H.
,
1997
, “
The Concept of Operations: The Bridge From Operational Requirements to Technical Specifications
,”
Ann. Software Eng.
,
3
(
1
), pp.
417
432
.10.1023/A:1018985904689
2.
U.S. Environmental Protection Agency
,
2006
, “
Final Technical Support Document: Fuel Economy Labeling of Motor Vehicle Revisions to Improve Calculation of Fuel Economy Estimates
,” Report No. EPA420-R-06-017.
3.
Simpson
,
A. G.
,
2005
, “
Parametric Modeling of Energy Consumption in Road Vehicles
,” Ph.D. thesis, University of Queensland, Australia.
4.
Lee
,
T.
,
Baraket
,
Z.
,
Gordon
,
T.
, and
Filipi
,
Z.
,
2011
, “
Characterizing One-day Missions of PHEVs Based on Representative Synthetic Driving Cycles
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1088
1101
.10.4271/2011-01-0885
5.
Daley
,
J. J.
,
1998
, “
Development of a Heavy Duty Vehicle Chassis Dynamometer Test Route
,” Master's thesis, West Virginia University, Department of Mechanical and Aerospace Engineering, Morgantown, WV.
6.
An
,
F.
,
Barth
,
M.
, and
Scora
,
G.
,
1997
, “
Impacts of Diverse Driving Cycles on Electric and Hybrid Electric Vehicle Performance
,”
SAE
Technical Paper No. 972646.10.4271/972646
7.
Rizzoni
,
G.
,
Guzzela
,
L.
, and
Baumann
,
B. M.
,
1999
, “
Unified Modeling of Hybrid Electric Vehicle Drivetrains
,”
IEEE/ASME Trans. Mechatron.
,
4
(
3
), pp.
246
257
.10.1109/3516.789683
8.
Aceves
,
S. M.
, and
Smith
,
J. R.
,
1997
, “
Hybrid and Conventional Hydrogen Engine Vehicles that Meet EZEV Emissions
,”
SAE
Paper No. 970290. 10.4271/970290
9.
Amrheim
,
M.
, and
Krein
,
P. T.
,
2005
, “
Dynamic Simulation for Analysis of Hybrid Electric Vehicle System and Subsystem Interactions, Including Power Electronics
,”
IEEE Trans. Veh. Technol.
,
54
(
3
), pp.
825
836
.10.1109/TVT.2005.847231
10.
Barnitt
,
R. A.
,
Brooker
,
A. D.
, and
Ramroth
,
L.
,
2010
, “
Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles
,”
25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition
, Nov. 5–9, Shenzhen, China.
11.
Ganji
,
B.
,
Kouzani
,
A. Z.
, and
Trinh
,
H. M.
,
2010
, “
Drive Cycle Analysis of the Performance on Hybrid Electric Vehicles
,”
Life System Modeling and Intelligent Computing
(Lecture Notes in Compute Science),
Springer
,
Berlin, Heidelberg
, Vol.
6328
, pp.
434
444
.10.1007/978-3-642-15621-2_48
12.
Gelder
,
A. V.
, and
Burke
,
A.
,
2008
, “
Plug-In Hybrid-Electric Vehicle Powertrain Design and Control Strategy Options and Simulation Results Using Lithium Batteries
,” EET-2008, Geneva, Switzerland.
13.
Butler
,
K. L.
,
Ehsani
,
M.
, and
Kamath
,
P.
,
1999
, “
A Matlab-Based Modeling and Simulation Package for Electric and Hybrid Electric Vehicle Design
,”
IEEE Trans. Veh. Technol.
,
48
(
6
), pp.
1770
1778
.10.1109/25.806769
14.
Cao
,
Q.
,
Pagerit
,
S.
,
Carlson
,
B.
, and
Rousseau
,
A.
,
2007
, “
PHEV Hymotion Prius Model Validation and Control Improvements
,”
Electric Vehicle Symposium
23, Dec., Anaheim, CA.
15.
Chen
,
L.
,
Zhu
,
F.
,
Zhang
,
M.
,
Huo
,
Y.
,
Yin
,
C.
, and
Peng
,
H.
,
2011
, “
Design and Analysis of an Electric Variable Transmission for Series-Parallel Hybrid Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
60
(
5
), pp.
2354
2363
.10.1109/TVT.2011.2134876
16.
Cuddy
,
M.
,
1995
, “
A Comparison of Modeled and Measured Energy Use in Hybrid Electric Vehicles
,” SAE International Congress and Exposition, No. 950256-4.
17.
Delorme
,
A.
,
Pagerit
,
S.
,
Sharer
,
P.
, and
Rousseau
,
A.
,
2009
, “
Cost Benefit Analysis of Advanced Powertrains From 2010 to 2045
,”
Electric Vehicle Symposium
24, May.
18.
Demirdöven
,
N.
, and
Deutch
,
J.
,
2004
, “
Hybrid Cars Now, Fuel Cell Cars Later
,”
Science
,
305
(
5686
), pp.
974
976
.10.1126/science.1093965
19.
Fellini
,
R.
,
Michelena
,
N.
,
Papalambros
,
P.
, and
Sasena
,
M.
,
2000
,
Optimal Design of Automotive Hybrid Powertrain Systems
,
University of Michigan
,
Ann Arbor, MI
.
20.
Gao
,
D. W.
,
Mi
,
C.
, and
Emadi
,
A.
,
2007
, “
Modeling and Simulation of Electric and Hybrid Vehicles
,”
Proc. IEEE (Invited Paper)
,
95
(
4
), pp.
729
745
.10.1109/JPROC.2006.890127
21.
Gao
,
D. W.
,
2005
, “
Performance Comparison of a Fuel Cell-Battery Hybrid Powertrain and a Fuel Cell-Ultracapacitor Hybrid Powertrain
,”
IEEE Trans. Veh. Technol.
,
54
(
3
), pp.
846
855
.10.1109/TVT.2005.847229
22.
Golbuff
,
S.
,
2006
, “
Optimization of a Plug-in Hybrid Electric Vehicle
,” Masters thesis, Georgia Institute of Technology, Atlanta, GA.
23.
Guezennec
,
Y.
,
Choi
,
T.
,
Paganelli
,
G.
, and
Rizzoni
,
G.
,
2003
, “
Supervisory Control of Fuel Cell Vehicles and Its Link to Overall System Efficiency and Low-Level Control Requirements
,”
American Control Conference
, Jun. 4–6, pp.
2055
2061
.10.1109/ACC.2003.1243377
24.
He
,
X.
, and
Hodgson
,
J. W.
,
2002
, “
Modeling and Simulation for Hybrid Electric Vehicles-Part 1: Modeling
,”
IEEE Trans. Intell. Transp. Syst.
,
3
(
4
), pp.
235
243
.10.1109/TITS.2002.807781
25.
Hofman
,
T.
, and
van Druten
,
R.
,
2004
, “
Energy Analysis of Hybrid Vehicle Powertrains
,” IEEE Vehicle Power and Propulsion, Technische Universiteit Eindhoven, The Netherlands.
26.
Husain
,
I.
, and
Islam
,
M. S.
,
1999
, “
Design, Modeling and Simulation of an Electric Vehicle System
,”
SAE
Technical Paper Series No. 1999-01-1149. 10.4271/1999-01-1149
27.
Kellermeyer
,
W. F.
,
1998
, “
Development and validation of a Modular Hybrid Electric Vehicle Simulation Model
,” Masters thesis, West Virginia University, Morgantown, WV.
28.
Kelley
,
K. J.
,
Zolot
,
M.
,
Glinsky
,
G.
, and
Hieronymus
,
A.
,
2001
, “
Test Results and Modeling the Honda Insight Using ADVISOR
,”
SAE
Paper No. NREL/CP-540-31085. 10.4271/2001-01-2537
29.
Koprubasi
,
K.
,
2008
, “
Modeling and Control of a Hybrid-Electric Vehicle for Driveability and Fuel Economy Improvements
,” Ph.D. dissertation, The Ohio State University, Columbus, OH.
30.
Moreno
,
J.
,
Ortúzar
,
M. E.
, and
Dixon
,
J. W.
,
2006
, “
Energy-Management System for a Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks
,”
IEEE Trans. Ind. Electron.
,
53
(
2
), pp.
614
623
.10.1109/TIE.2006.870880
31.
Ning
,
Q.
,
Xuan
,
D.
,
Nan
,
Y.
, and
Kim
,
Y.
,
2009
, “
Modeling and Simulation for Fuel Cell-Battery Hybrid Electric Vehicle
,”
International Conference on Computer Modeling and Simulation
, Macau, Feb. 20–22, pp.
53
57
.10.1109/ICCMS.2009.62
32.
Powell
,
B. K.
,
Bailey
,
K. E.
, and
Cikanek
,
S. R.
,
1998
, “
Dynamic Modeling and Control of Hybrid Electric Vehicle Powertrain Systems
,”
IEEE Control Systems
,
18
(
5
), pp.
17
33
.10.1109/37.722250
33.
Rahman
,
Z.
,
Butler
,
K. L.
, and
Ehsani
,
M.
,
1999
, “
Designing Parallel Hybrid Electric Vehicle Using V-ELPH 2.01
,”
The American Control Conference
, San Diego, CA, pp.
2693
2697
.
34.
Shiau
,
C. N.
,
Kaushal
,
N.
,
Hendrickson
,
C. T.
,
Peterson
,
S. B.
,
Whitacre
,
J. F.
, and
Michalek
,
J. J.
,
2010
, “
Optimal Plug-In Hybrid Electric Vehicle Design and Allocations for Minimum Life Cycle Cost, Petroleum Consumption, and Greenhouse Gas Emissions
,”
ASME J. Mech. Des.
,
132
(9), p.
091013
.10.1115/1.4002194
35.
Simpson
,
A. G.
,
2005
, “
Full-Cycle Assessment of Alternative Fuels for Light-Duty Road Vehicles in Australia
,”
Proceedings of World Energy Congress
, University of Queensland, Australia.
36.
Wei
,
X.
,
2004
, “
Modeling and Control of a Hybrid Electric Drivetrain for Optimum Fuel Economy, Performance and Driveability
,” Ph.D. dissertation, The Ohio State University, Columbus, OH.
37.
Wipke
,
K. B.
, and
Cuddy
,
M. R.
,
1996
, “
Using an Advanced Vehicle Simulator (ADVISOR) to Guide Hybrid Vehicle Propulsion System Development
,” Prepared for the NESEA Sustainable Transportation, Report No. NREL/TP-425-21615.
38.
Wu
,
X.
,
Cao
,
B.
,
Li
,
X.
,
Xu
,
J.
, and
Ren
,
X.
,
2010
, “
Component Sizing Optimization of Plug-in Hybrid Electric Vehicles
,”
J. Appl. Energy
,
88
(
3
), pp.
799
804
.10.1016/j.apenergy.2010.08.018
39.
Geller
,
B. M.
,
2010
, “
Increased Understanding of Vehicle Design through Modeling, Simulation, and Optimization
,” Master's thesis, Colorado State University, Department of Mechanical Engineering, Fort Collins, CO.
40.
Gao
,
W.
, and
Porandala
,
S. K.
,
2005
, “
Design Optimization of a Parallel Hybrid Electric Powertrain
,” Vehicle Power and Propulsion,
IEEE
Conference. 10.1109/VPPC.2005.1554609
41.
Wipke
,
K.
,
Markel
,
T.
, and
Nelson
,
D.
,
2001
, “
Optimizing Energy Management Strategy and Degree of Hybridization for a Hydrogen Fuel Cell SUV
,”
Electric Vehicle Symposium
18, Berlin, Germany.
42.
Decker
,
J. M.
,
2009
, “
Systems Engineering Optimization
,”
7th Annual Conference on Systems Engineering Research (CSER)
.
43.
Rousseau
,
A.
,
Pagerit
,
S.
, and
Gao
,
D.
,
2007
, “
Plug-in Hybrid Electric Vehicle Control Strategy Parameter Optimization
,” Journal of Asian Electric Vehicles, 6(2), pp.
1125
1133
. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.324.2003&rep=rep1&type=pdf
44.
U.S. Environmental Protection Agency, 2010, “Testing and Measuring Emissions: Dynamometer Driver's Aid,” www.epa.gov/nvfel/testing/dynamometer.htm
45.
O'Keefe
,
M. P.
,
Simpson
,
A.
,
Kelley
,
K. J.
, and
Pederson
,
D. S.
,
2007
, “
Duty Cycle Characterization and Evaluation Towards Heavy Hybrid Vehicle Applications
,”
SAE
Technical Paper No. 2007-01-0302. 10.4271/2007-01-0302
46.
Wallén
,
J.
,
2004
, “
Modeling of Components for Conventional Car and Hybrid Electric Vehicle in Modelica
,” Master's thesis, Vehicular Systems, Department of Electrical Engineering at Linköpings Universitet, Linköping, Sweden.
47.
Moura
,
S. J.
,
Fathy
,
H. K.
, and
Callaway
,
S. D.
,
2011
, “
A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
545
555
.10.1109/TCST.2010.2043736
48.
Tate
,
E. D.
,
Grizzle
,
J. W.
, and
Peng
,
H.
,
2008
, “
Shortest Path Stochastic Control for Hybrid Electric Vehicles
,”
Int. J. Robust and Nonlinear Control
,
18
(
14
), pp.
1409
1429
.10.1002/rnc.1288
49.
Geller
,
B. M.
, and
Bradley
,
T. H.
,
2012
, “
Quantifying Uncertainty in Vehicle Simulation Studies
,”
SAE
Technical Paper No. 2012-01-0506. 10.4271/2012-01-0506
50.
Weisstein
,
E. W.
, “
Markov Chain
,” From MathWorld–A Wolfram, http://mathworld.wolfram.com/MarkovChain.html
You do not currently have access to this content.