Abstract

This paper introduces a general and flexible design method for the inverse modal optimization of undamped vibrating systems, i.e., for the computation of mass and stiffness linear modifications ensuring the desired system eigenstructure. The technique is suitable for the design of new systems or the optimization of the existing ones and can handle several design requirements and constraints. Paramount strengths of the method are its capability to modify an arbitrary number of parameters and assigned vibration modes, as well as the possibility of dealing with mass and stiffness matrices with arbitrary topologies. To this purpose, the modification problem is formulated as a constrained inverse eigenvalue problem and then solved within the frame of convex optimization. The effectiveness of the method is assessed by applying it to two different test cases. In particular, the second investigation deals with a meaningful mechanical design application: the optimization of a system recalling an industrial vibratory feeder. The results highlight the generality of the method and its capability to ensure the achievement of the prescribed eigenstructure.

References

1.
Farahani
,
K.
, and
Bahai
,
H.
, 2004, “
An Inverse Strategy for Relocation of Eigenfrequencies in Structural Design. Part I: First Order Approximate Solutions
,”
J. Sound Vib.
,
274
(
3–5
), pp.
481
505
.
2.
Ram
,
Y. M.
, and
Braun
,
S. G.
, 1991, “
An Inverse Problem Associated With Modification of Incomplete Dynamic Systems
,”
ASME J. Appl. Mech.
,
58
(
1
), pp.
233
237
.
3.
Bucher
,
I.
, and
Braun
,
S.
, 1993, “
The Structural Modification Inverse Problem: An Exact Solution
,”
Mech. Syst. Signal Process.
,
7
(
3
), pp.
217
238
.
4.
Braun
,
S. G.
, and
Ram
,
Y. M.
, 2001, “
Modal Modification of Vibrating Systems: Some Problems and Their Solutions
,”
Mech. Syst. Signal Process.
,
15
(
1
), pp.
101
119
.
5.
Li
,
T.
, and
He
,
J.
, 1999, “
Local Structural Modification Using Mass and Stiffness Changes
,”
Eng. Struct.
,
21
(
11
), pp.
1028
1037
.
6.
Liangsheng
,
W.
, 2003, “
Direct Method of Inverse Eigenvalue Problems for Structure Redesign
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
845
847
.
7.
Sivan
,
D. D.
, and
Ram
,
Y. M.
, 1997, “
Optimal Construction of a Mass-Spring System with Prescribed Modal and Spectral Data
,”
J. Sound Vib.
,
201
(
3
), pp.
323
334
.
8.
Park
,
Y. -H.,
and
Park
,
Y. -s.,
2000, “
Structural Modification Based on Measured Frequency Response Functions: An Exact Eigenproperties Reallocation
,”
J. Sound Vib.
,
237
(
3
), pp.
411
426
.
9.
Mottershead
,
J. E.
, 2001, “
Structural Modification for the Assignment of Zeros Using Measured Receptances
,”
ASME J. Appl. Mech.
,
68
(
5
), pp.
791
798
.
10.
Kyprianou
,
A.
,
Mottershead
,
J. E.
, and
Ouyang
,
H.
, 2004, “
Assignment of Natural Frequencies by an Added Mass and One or More Springs
,”
Mech. Syst. Signal Process.
,
18
(
2
), pp.
263
289
.
11.
Kyprianou
,
A.
,
Mottershead
,
J. E.
, and
Ouyang
,
H.
, 2005, “
Structural Modification, Part 2: Assignment of Natural Frequencies and Antiresonances by an Added Beam
,”
J. Sound Vib.
,
284
(
1–2
), pp.
267
281
.
12.
Mottershead
,
J. E.
,
Tehrani
,
M. G.
,
Stancioiu
,
D.
,
James
,
S.
, and
Shahverdi
,
H.
, 2006, “
Structural Modification of a Helicopter Tailcone
,”
J. Sound Vib.
,
298
(
1–2
), pp.
366
384
.
13.
Ram
,
Y. M.
, 2009, “
Optimal Mass Distribution in Vibrating Systems
,”
Mech. Syst. Signal Process.
,
23
(
7
), pp.
2130
2140
.
14.
Boyd
,
S.
, and
Vandenberghe
,
L.
, 2004,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
15.
Demeulenaere
,
B.
,
Aertbelien
,
E.
,
Verschuure
,
M.
,
Swevers
,
J.
, and
De Schutter
,
J.
, 2006, “
Ultimate Limits for Counterweight Balancing of Crank-Rocker Four-Bar Linkages
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1272
1284
.
16.
Calvetti
,
D.
, and
Reichel
,
L.
, 2005, “
Tikhonov Regularization with a Solution Constraint
,”
SIAM J. Sci. Comput.
,
26
(
1
), pp.
224
239
.
17.
Grant
,
M.
, and
Boyd
,
S.
, 2010, “
CVX: Matlab Software for Disciplined Convex Programming
,” Version 1.21, http://cvxr.com/cvxhttp://cvxr.com/cvx.
18.
Grant
,
M.
, and
Boyd
,
S.
, 2008,
Graph Implementations for Nonsmooth Convex Programs
,
Recent Advances in Learning and Control
(a tribute to
M.
Vidyasagar)
,
Blondel
,
V.
,
Boyd
,
S.
, and
Kimura
,
H.
, eds.,
Lecture Notes in Control and Information Sciences
,
Springer
,
New York
, pp.
95
110
. http://stanford.edu/~boyd/graph_dcp.htmlhttp://stanford.edu/~boyd/graph_dcp.html.
19.
Choi
,
H. G.
,
Thite
,
A. N.
, and
Thompson
,
D. J.
, 2007, “
Comparison of Methods for Parameter Selection in Tikhonov Regularization with Application to Inverse Force Determination
,”
J. Sound Vib.
,
304
(
3–5
), pp.
894
917
.
20.
Calvetti
,
D.
,
Reichel
,
L.
, and
Shuibi
,
A.
, 2004, “
L-curve and Curvature Bounds for Tikhonov Regularization
,”
Numer. Algorithms
,
35
(
2–4
), pp.
301
314
.
21.
Hansen
,
P. C.
, 2002, “
Deconvolution and Regularization with Toeplitz Matrices
,”
Numer. Algorithms
,
29
(
4
), pp.
323
378
.
22.
Van Den Berg
,
S.
,
Mohanty
,
P.
, and
Rixen
,
D. J.
, 2004, “
Investigating the Causes of Non-uniform Cookie Flow in Vibratory Conveyors: Part 1
,”
Exp. Tech.
,
28
(
6
), pp.
46
49
.
You do not currently have access to this content.