Many metamodeling techniques have been developed in the past two decades to reduce the computational cost of design evaluation. With the increasing scale and complexity of engineering problems, popular metamodeling techniques including artificial neural network (ANN), Polynomial regression (PR), Kriging (KG), radial basis functions (RBF), and multivariate adaptive regression splines (MARS) face difficulties in solving highly nonlinear problems, such as the crashworthiness design. Therefore, in this work, we integrate the least support vector regression (LSSVR) with the mode pursuing sampling (MPS) optimization method and applied the integrated approach for crashworthiness design. The MPS is used for generating new samples which are concentrated near the current local minima at each iteration and yet still statistically cover the entire design space. The LSSVR is used for establishing a more robust metamodel from noisy data. Therefore, the proposed method integrates the advantages of both the LSSVR and MPS to more efficiently achieve reasonably accurate results. In order to verify the proposed method, well-known highly nonlinear functions are used for testing. Finally, the proposed method is applied to three typical crashworthiness optimization cases. The results demonstrate the potential capability of this method in the crashworthiness design of vehicles.

References

1.
Kurtaran
,
H.
,
Eskandarian
,
A.
,
Marzougui
,
D.
, and
Bedewi
,
N. E.
, 2002, “
Crashworthiness Design Optimization Using Successive Response Surface Approximations
,”
Comput. Mech.
,
29
(
4–5
), pp.
409
421
.
2.
Gu
,
L.
, 2001, “
A Comparison of Polynomial Based Regression Models in Vehicle Safety Analysis
,”
Proceedings of ASME Design Engineering Technical Conferences
,
Pittsburgh
,
PA
, September, Paper No. DAC-21063.
3.
Yang
,
R. J.
,
Wang
,
N.
,
Tho
,
C. H.
,
Bobineau
,
J. P.
, and
Wang
,
B. P.
, 2005, “
Metamodeling Development for Vehicle Frontal Impact Simulation
.”
ASME J. Mech. Des.
,
127
(
5
), pp.
1014
1021
.
4.
Forsberg
,
J.
, and
Nilsson
,
L.
, 2005 “
On Polynomial Response Surfaces and Kriging for Use in Structural Optimization of Crashworthiness
,”
Struct. Multidiscip. Optim.
,
29
(
3
), pp.
1615
1488
.
5.
Forsberg
.
J.
, and
Nilsson
.
L.
, 2006, “
Evaluation of Response Surface Methodologies Used in Crashworthiness Optimization
,”
Int. J. Impact Eng.
,
32
(
5
), pp.
759
777
.
6.
Fang
,
H.
,
Rais-Rohani
,
M.
,
Liu
,
Z.
, and
Horstemeyer
,
M. F.
, 2005, “
A Comparative Study of Metamodeling Methods for Multiobjective Crashworthiness Optimization
,”
Comput. Struct.
,
83
, pp.
2121
2136
.
7.
Wang
,
H.
,
Li
,
E.
,
Li
,
G. Y.
, and
Zhong
,
Z. H.
, 2008, “
Development of Metamodeling Based Optimization System for High Nonlinear Engineering Problems
,”
Adv. Eng. Software
,
39
(
8
), pp.
629
645
.
8.
Redhe
,
M.
and
Nilsson
,
L. A.
, 2006, “
Multipoint Version of Space Mapping Optimization Applied to Vehicle Crashworthiness Design
,”
Struct. Multidiscip. Optim.
,
31
(
2
), pp.
134
146
.
9.
Yang
,
H.
,
Chan
,
L.
, and
King
,
I.
, 2002, “
Support Vector Machine Regression for Volatile Stock Market Prediction
,”
Lect. Notes in Comput. Sci.
,
2412
, pp.
391
396
.
10.
Yang
,
H.
,
King
,
I.
, and
Chan
,
L.
, 2002, “
Non-Fixed and Asymmetrical Margin Approach to Stock Market Prediction Using Support Vector Regression
,”
Proceedings of the International Conference on Neural Information Processing (ICONIP2002)
,
Singapore
.
11.
Wu
,
C. H.
,
Ho
,
M. J.
, and
Lee
,
D. T.
, 2003, “
Travel Time Prediction With Support Vector Regression
,”
IEEE Trans. Intell. Transp. Syst.
,
5
, pp.
276
81
.
12.
Cherkassky
,
V.
, and
Ma
,
Y.
, 2004, “
Comparison of Loss Functions for Linear Regression
,”
IEEE Trans. Neural Netw.
,
1
(
25–29
), pp.
400
405
.
13.
Clarke
,
S. M.
,
Griebsch
,
J. H.
, and
Simpson
,
T. W.
, 2005, “
Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses
,”
ASME, J. Mech. Des.
,
127
(
6
), pp.
1077
1087
.
14.
Suykens
,
J. A. K.
and
Vandewalle
,
J.
, 1999, “
Least Squares Support Vector Machine Classifiers
,”
Neural Process. Lett.
,
9
, pp.
293
300
.
15.
Box
,
G. E. P.
and
Draper
,
N. R.
, 1969,
Evolutionary Operation: A Statistical Method for Process Management
,
Wiley
,
New York
.
16.
Chen
,
W.
,
Allen
,
J. K.
,
Schrage
,
D. P.
, and
Mistree
,
F.
, 1997, “
Statistical Experimentation Methods for Achieving Affordable Concurrent Systems Design
,”
AIAA J.
,
35
(
5
), pp.
893
900
.
17.
Wujek
,
B. A.
, and
Renaud
,
J. E.
, 1998, “
New Adaptive Move-Limit Management Strategy for Approximate Optimization–Part 1
,”
AIAA J.
,
36
(
10
), pp.
1911
1921
.
18.
Wujek
,
B. A.
, and
Renaud
,
J. E.
, 1998, “
New Adaptive Move-Limit Management Strategy for Approximate Optimization–Part 2
,”
AIAA J.
,
36
(
10
), pp,
1922
1934
.
19.
Toropov
,
V.
, van
Keulen
,
F.
,
Markine
,
V.
, and
de Doer
,
H.
, 1996, “
Refinements in the Multi-Point Approximation Method to Reduce the Effects of Noisy Structural Responses
,”
Proceedings 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Vol.
2
,
AIAA
,
Bellevue, WA
, September, Paper No DETC/DAC-1451.
20.
Alexandrov
,
N.
,
Dennis
,
J. E. J.
,
Lewis
,
R. M.
, and
Torczon
,
V.
, 1998, “
A Trust Region Framework for Managing the Use of Approximation Models in Optimization
,”
Struct. Optim.
,
15
(
1
), pp.
16
23
.
21.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black Box Functions
,”
J. Global Optim.
,
13
, pp.
455
492
.
22.
Wang
,
G. G.
, and
Simpson
,
T. W.
, 2001, “
Fuzzy Clustering Based Hierarchical Metamodeling for Design Space Reduction and Optimization
,”
Eng. Optimiz.
,
36
(
3
), pp.
313
335
.
23.
Wang
,
H.
,
Li
,
G. Y.
, and
Zhong
,
Z. H.
, 2008, “
Optimization of Sheet Metal Forming Processes by Adaptive Response Surface Based on Intelligent Sampling Method
,”
J. Mater. Process. Technol.
,
197
(
1–3
), pp.
77
88
.
24.
Wang
H.
,
Li
E.
, and
Li
G.
, 2010,“
Parallel Boundary and Best Neighbor Searching Sampling Algorithm for Drawbead Design Optimization in Sheet Metal Forming
,”
Struct Multidiscip Optim.
,
41
(
2
), pp.
309
324
.
25.
Wang
,
L.
,
Shan
,
S.
, and
Wang
,
G. G.
, 2004, “
Mode-Pursuing Sampling Method for Global Optimization on Expensive Black-Box Functions
,”
Eng. Optimiz.
,
36
(
4
), pp.
419
438
.
26.
Sharif
,
B.
,
Wang
,
G. G.
, and
Mekkawy
,
T.
, 2008, “
Mode Pursing Sampling Method for Variable Optimization on Expensive Black-Box Functions
,”
ASME J. Mech. Des.
,
130
, p.
021402
.
27.
Mercer
.
J.
, 1969, “
Functions of Positive and Negative Type and Their Connection With the Theory of Integral Equations
,”
Philos. Trans. R.. Soc. London
,
83
(
559
), pp.
69
70
.
28.
Hock
,
W.
and
Schittkowski
,
K.
, 1981,
Test Examples for Nonlinear Programming Codes
,
Springer
,
New York
.
29.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2001, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
,
23
, pp.
1
13
.
30.
Mitchell
,
T. J.
, and
Morris
,
M. D.
, 1992, “
Bayesian Design and Analysis of Computer Experiments: Two Examples
,”
Stat. Sin.
2
, pp.
359
379
.
31.
Kurtaran
,
H.
,
Eskandarian
,
A.
,
Marzougui
D.
, and
Bedewi
,
N. E.
, 2002, “
Crashworthiness Design Optimization Using Successive Response Surface Approximations
,”
Comput. Mech.
,
29
, pp.
409
421
.
32.
Belytschko
,
T.
,
Lin
,
J. I.
, and
Tsay
,
C. S.
, 1984. “
Explicit Algorithms for the Nonlinear Dynamics of Shells
,”
Comput. Methods Appl. Mech. Eng.
,
42
, pp.
225
251
.
You do not currently have access to this content.