This paper addresses the issue of designing experiments for a metamodel that needs to be accurate for a certain level of the response value. Such a situation is common in constrained optimization and reliability analysis. Here, we propose an adaptive strategy to build designs of experiments that is based on an explicit trade-off between reduction in global uncertainty and exploration of regions of interest. A modified version of the classical integrated mean square error criterion is used that weights the prediction variance with the expected proximity to the target level of response. The method is illustrated by two simple examples. It is shown that a substantial reduction in error can be achieved in the target regions with reasonable loss of global accuracy. The method is finally applied to a reliability analysis problem; it is found that the adaptive designs significantly outperform classical space-filling designs.

1.
Queipo
,
N.
,
Haftka
,
R.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Kevin Tucker
,
P.
, 2005, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
0376-0421,
41
(
1
), pp.
1
28
.
2.
Santner
,
T.
,
Williams
,
B.
, and
Notz
,
W.
, 2003,
The Design and Analysis of Computer Experiments
,
Springer
,
New York
.
3.
Wang
,
G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
370
380
.
4.
Melchers
,
R.
, 1987,
Structural Reliability: Analysis and Prediction
,
Ellis Horwood
,
New York
.
5.
Rajashekhar
,
R.
, and
Ellingwood
,
B.
, 1993, “
A New Look at the Response Surface Approach for Reliability Analysis
,”
Struct. Safety
0167-4730,
12
, pp.
205
220
.
6.
Kuczera
,
R.
, and
Mourelatos
,
Z.
, 2009, “
On Estimating the Reliability of Multiple Failure Region Problems Using Approximate Metamodels
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
121003
.
7.
Arenbeck
,
H.
,
Missoum
,
S.
,
Basudhar
,
A.
, and
Nikravesh
,
P.
, 2010, “
Reliability-Based Optimal Design and Tolerancing for Multibody Systems Using Explicit Design Space Decomposition
,”
ASME J. Mech. Des.
0161-8458,
132
, p.
021010
.
8.
Ranjan
,
P.
,
Bingham
,
D.
, and
Michailidis
,
G.
, 2008, “
Sequential Experiment Design for Contour Estimation From Complex Computer Codes
,”
Technometrics
0040-1706,
50
(
4
), pp.
527
541
.
9.
Jones
,
D.
,
Schonlau
,
M.
, and
Welch
,
W.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
0925-5001,
13
(
4
), pp.
455
492
.
10.
Tu
,
C.
, and
Barton
,
R.
, 1997. “
Production Yield Estimation by the Metamodel Method With a Boundary-Focused Experiment Design
,”
ASME Design Engineering Technical Conference
, American Society of Mechanical Engineers.
11.
Vazquez
,
E.
, and
Bect
,
J.
, 2009. “
A Sequential Bayesian Algorithm to Estimate a Probability of Failure
,”
Proceedings of 15th IFAC Symposium on System Identification (SYSID)
, Saint-Malo, France.
12.
Matheron
,
G.
, 1969. “
Le Krigeage Universel
,” Cahiers du centre de morphologie mathematique, 1.
13.
Rasmussen
,
C.
, and
Williams
,
C.
, 2006,
Gaussian Processes for Machine Learning
,
Springer
,
New York
.
14.
Martin
,
J.
, and
Simpson
,
T.
, 2004. “
A Monte Carlo Simulation of the Kriging Model
,”
Tenth AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, pp.
2004
4483
.
15.
Oakley
,
J.
, and
O’Hagan
,
A.
, 2004, “
Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach
,”
J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246,
66
, pp.
751
769
.
16.
McKay
,
M.
,
Beckman
,
R.
, and
Conover
,
W.
, 2000, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
0040-1706,
42
, pp.
55
61
.
17.
Box
,
G.
, and
Draper
,
N.
, 1986,
Empirical Model-Building and Response Surface, Wiley Series in Probability and Mathematical Statistics
,
Wiley
,
New York
.
18.
Kiefer
,
J.
, 1961, “
Optimum Designs in Regression Problems, II
,”
Ann. Math. Stat.
0003-4851,
32
, pp.
298
325
.
19.
St. John
,
R.
, and
Draper
,
N.
, 1975, “
D-Optimality for regression Designs: A Review
,”
Technometrics
0040-1706,
17
, pp.
15
23
.
20.
Sacks
,
J.
,
Schiller
,
S.
, and
Welch
,
W.
, 1989, “
Designs for Computer Experiments
,”
Technometrics
0040-1706,
31
, pp.
41
47
.
21.
Lin
,
Y.
,
Luo
,
D.
,
Bailey
,
T.
,
Khire
,
R.
,
Wang
,
J.
, and
Simpson
,
T. W.
, 2008, “
Model Validation and Error Modeling to Support Sequential Sampling
,”
ASME
Paper No. DETC2008/DAC-49336.
22.
Turner
,
C.
,
Campbell
,
M.
, and
Crawford
,
R.
, 2003, “
Generic Sequential Sampling for Meta-Model Approximations
,”
ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, pp.
2
6
.
23.
Williams
,
B.
,
Santner
,
T.
, and
Notz
,
W.
, 2000, “
Sequential Design of Computer Experiments to Minimize Integrated Response Functions
,”
Stat. Sin.
1017-0405,
10
(
4
), pp.
1133
1152
.
24.
Currin
,
C.
,
Mitchell
,
T.
,
Morris
,
M.
, and
Ylvisaker
,
D.
, 1991, “
Bayesian Prediction of Deterministic Functions, With Applications to the Design and Analysis of Computer Experiments
,”
J. Am. Stat. Assoc.
0162-1459,
86
, pp.
953
963
.
25.
Osio
,
I.
, and
Amon
,
C.
, 1996, “
An Engineering Design Methodology With Multistage Bayesian Surrogates and Optimal Sampling
,”
Res. Eng. Des.
0934-9839,
8
(
4
), pp.
189
206
.
26.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2002, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
Proceedings of DETC
, Vol.
2
, Citeseer.
27.
Jones
,
D.
, 2001, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
0925-5001,
21
(
4
), pp.
345
383
.
28.
Shan
,
S.
, and
Wang
,
G.
, 2004, “
Space Exploration and Global Optimization for Computationally Intensive Design Problems: A Rough Set Based Approach
,”
Struct. Multidiscip. Optim.
1615-147X,
28
(
6
), pp.
427
441
.
29.
Oakley
,
J.
, 2004, “
Estimating Percentiles of Uncertain Computer Code Outputs
,”
Appl. Stat.
0285-0370,
53
, pp.
83
93
.
30.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
31.
Gano
,
S.
,
Renaud
,
J.
,
Martin
,
J.
, and
Simpson
,
T.
, 2006, “
Update Strategies for Kriging Models Used in Variable Fidelity Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
32
(
4
), pp.
287
298
.
32.
Ginsbourger
,
D.
, 2009, “
Metamodeles Multiples Pour L’approximation et L’optimisation de Fonctions Numeriques Multivariables
,” Ph.D. thesis, Ecole Nationale Superieure des Mines de Saint Etienne.
33.
Zhang
,
F.
, 2005,
The Schur Complement and Its Applications
,
Springer Verlag
,
New York
.
34.
Neal
,
R.
, 1997, “
Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification
,” Arxiv preprint physics/9701026.
35.
Hansen
,
N.
, and
Kern
,
S.
, 2004, “
Evaluating the CMA Evolution Strategy on Multimodal Test Functions
,”
Lect. Notes Comput. Sci.
0302-9743,
3242
, pp.
282
291
.
36.
Chipperfield
,
A.
,
Fleming
,
P.
,
Pohlheim
,
H.
, and
Fonseca
,
C.
, 1994, “
Genetic Algorithm Toolbox Users Guide
,” ACSE Research Report No. 512.
37.
Sobol
,
I.
, 1976, “
Uniformly Distributed Sequences With an Additional Uniform Property
,”
Zh. Vychisl. Mat. Mat. Fiz
,
16
, pp.
1332
1337
.
You do not currently have access to this content.