In this work, we develop a filter-based sequential quadratic programming (SQP) algorithm for solving reliability-based design optimization (RBDO) problems with highly nonlinear constraints. The proposed filter-based SQP uses the approach of average importance sampling (AAIS) in calculating the values and gradients of probabilistic constraints. AAIS allocates samples at the limit state boundaries such that relatively few samples are required in calculating constraint probability values to achieve high accuracy and low variance. The accuracy of probabilistic constraint gradients using AAIS is improved by a sample filter that eliminates sample outliers that have low probability of occurrence and high gradient values. To ensure convergence, the algorithm uses an iteration filter in place of the penalty function to avoid the ill-conditioning problems of the penalty parameters in the acceptance of a design update. A sample reuse mechanism that improves the efficiency of the algorithm by avoiding redundant samples is introduced. The “unsampled” region, the region not covered by previous samples, is identified using iteration step lengths, the trust region, and constraint reliability levels. As a result, the filter-based sampling SQP efficiently handles highly nonlinear probabilistic constraints with multiple most probable points or functions without analytical forms. Several examples are demonstrated, and the results are compared with those from first order reliability method/second order reliability method and Monte Carlo simulations. Results show that by integrating the modified AAIS with the filter-based SQP, the overall computation cost of solving RBDO problems can be significantly reduced.

1.
Allen
,
M.
, and
Maute
,
K.
, 2005, “
Reliability-Based Shape Optimization of Structures Undergoing Fluid-Structure Interaction Phenomena
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
, pp.
3472
3495
.
2.
Huyse
,
L.
,
Padula
,
S.
,
Lewis
,
R.
, and
Li
,
W.
, 2002, “
Probabilistic Approach to Free-Form Airfoil Shape Optimization Under Uncertainty
,”
AIAA J.
0001-1452,
40
(
9
), pp.
1764
1772
.
3.
George
,
P.
,
Gea
,
H. -C.
, and
Jaluria
,
Y.
, 2006, “
Optimization of Chemical Vapor Deposition Process
,”
Proceedings of the ASME Design Engineering Technical Conference
.
4.
Gu
,
L.
,
Yang
,
R. -J.
,
Tho
,
C.
,
Makowski
,
M.
,
Faruque
,
O.
, and
Li
,
Y.
, 2001, “
Optimization and Robustness for Crashworthiness of Side Impact
,”
Int. J. Veh. Des.
0143-3369,
26
(
4
), pp.
348
360
.
5.
Chan
,
K. -Y.
,
Skerlos
,
S.
, and
Papalambros
,
P.
, 2010, “
A Method for Reliability-Based Optimization With Multiple Non-Normal Stochastic Parameters: A Simplified Airshed Management Case Study
,”
Stochastic Environ. Res. Risk Assess.
,
24
, pp.
101
116
.
6.
Hasofer
,
A.
, and
Lind
,
N.
, 1974, “
Exact and Invariant Second-Moment Code Format
,”
J. Engrg. Mech. Div.
0044-7951,
100
, pp.
111
121
.
7.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1983, “
First-Order Concepts in System Reliability
,”
Struct. Safety
0167-4730,
1
(
3
), pp.
177
188
.
8.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1981, “
Non-Normal Dependent Vectors in Structural Safety
,”
J. Engrg. Mech. Div.
0044-7951,
107
(
6
), pp.
1227
1238
.
9.
Cornell
,
C.
, 1967, “
Bounds on Reliability of Structural Systems
,”
ASCE J. Struct. Div.
0044-8001,
93
, pp.
171
200
.
10.
Breitung
,
K.
, 1984, “
Asymptotic Approximations for Multinormal Integrals
,”
J. Eng. Mech.
0733-9399,
110
(
3
), pp.
357
366
.
11.
Fiessler
,
B.
,
Neumann
,
H. -J.
, and
Rackwitz
,
R.
, 1979, “
Quadratic Limit States in Structural Reliability
,”
J. Engrg. Mech. Div.
0044-7951,
105
(
4
), pp.
661
676
.
12.
Halton
,
J.
, 1970, “
Retrospective and Prospective Survey of the Monte Carlo Method
,”
SIAM Rev.
0036-1445,
12
(
1
), pp.
1
63
.
13.
Rief
,
H.
,
Gelbard
,
E.
,
Schaefer
,
R.
, and
Smith
,
K.
, 1986, “
Review of Monte Carlo Techniques for Analyzing Reactor Perturbations
,”
Nucl. Sci. Eng.
0029-5639,
92
(
2
), pp.
289
297
.
14.
Turner
,
J.
,
Wright
,
H.
, and
Hamm
,
R.
, 1985, “
A Monte Carlo Primer for Health Physicists
,”
Health Phys.
0017-9078,
48
(
6
), pp.
717
733
.
15.
Melchers
,
R.
, 2000,
Structural Reliability Analysis and Prediction
,
Wiley
,
New York
.
16.
Fishman
,
G.
, 1996,
Monte Carlo: Concepts, Algorithms, and Applications
,
Springer
,
New York
.
17.
Hofer
,
E.
, 1999, “
Sensitivity Analysis in the Context of Uncertainty Analysis for Computationally Intensive Models
,”
Comput. Phys. Commun.
0010-4655,
117
(
1–2
), pp.
21
34
.
18.
Au
,
S.
, and
Beck
,
J.
, 1999, “
New Adaptive Importance Sampling Scheme for Reliability Calculations
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
135
158
.
19.
Kalagnanam
,
J.
, and
Diwekar
,
U.
, 1997, “
An Efficient Sampling Technique for Off-Line Quality Control
,”
Technometrics
0040-1706,
39
(
3
), pp.
308
319
.
20.
Kim
,
K. -J.
, and
Diwekar
,
U.
, 2002, “
Efficient Combinatorial Optimization Under Uncertainty. 1. Algorithmic Development
,”
Ind. Eng. Chem. Res.
0888-5885,
41
(
5
), pp.
1276
1284
.
21.
Wu
,
Y.
, 1993, “
Adaptive Importance Sampling (AIS)-Based System Reliability Sensitivity Analysis Method
,”
Proceedings of the IUTAM Symposium
,
Springer-Verlag
,
New York
, p.
550
.
22.
Helton
,
J.
, and
Davis
,
F.
, 2003, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
0951-8320,
81
(
1
), pp.
23
69
.
23.
Diwekar
,
U.
, and
Kalagnanam
,
J.
, 1996, “
Robust Design Using an Efficient Sampling Technique
,”
Comput. Chem. Eng.
0098-1354,
20
, pp.
S389
S394
.
24.
Diwekar
,
U.
, and
Kalagnanam
,
J.
, 1997, “
Efficient Sampling Technique for Optimization Under Uncertainty
,”
AIChE J.
0001-1541,
43
(
2
), pp.
440
447
.
25.
Harbitz
,
A.
, 1986, “
Efficient Sampling Method for Probability of Failure Calculation
,”
Struct. Safety
0167-4730,
3
(
2
), pp.
109
115
.
26.
Karamchandani
,
A.
,
Bjerager
,
P.
, and
Cornell
,
C.
, 1989, “
Adaptive Importance Sampling
,”
Proceedings of the Fifth International Conference on Structural Safety and Reliability
, pp.
855
862
.
27.
Wu
,
Y.
, 1993, “
Adaptive Importance Sampling AIS-Based System Reliability Sensitivity Analysis Method
,”
Proceedings of the IUTAM Symposium
, Jun. 7–10, p.
550
.
28.
Haldar
,
A.
, and
Mahadevan
,
S.
, 1999,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
29.
Der Kiureghian
,
A.
, and
Dakessian
,
T.
, 1998, “
Multiple Design Points in First and Second-Order Reliability
,”
Struct. Safety
0167-4730,
20
, pp.
37
49
.
30.
Au
,
S.
,
Papadimitriou
,
C.
, and
Beck
,
J.
, 1999, “
Reliability of Uncertain Dynamical Systems With Multiple Design Points
,”
Struct. Safety
0167-4730,
21
(
2
), pp.
113
133
.
31.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Reliability Assessment Using Stochastic Finite Element Analysis
,
Wiley
,
New York
.
32.
Royset
,
J.
, and
Polak
,
E.
, 2004, “
Reliability-Based Optimal Design Using Sample Average Approximations
,”
Probab. Eng. Mech.
0266-8920,
19
(
4
), pp.
331
343
.
33.
Ho
,
C. -M.
, and
Chan
,
K. -Y.
, 2010, “
Modified Reduced Gradient With Realizations Sorting for Hard Equality Constraints in Reliability-Based Design Optimization
,”
Proceedings of the ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Paper No. DETC2010-28159.
34.
Fletcher
,
R.
,
Leyffer
,
S.
, and
Toint
,
P. -L.
, 2002, “
On the Global Convergence of a Filter-SQP Algorithm
,”
J. Opt.
0150-536X,
13
(
1
), pp.
44
59
.
35.
Fletcher
,
R.
, and
Leyffer
,
S.
, 2002, “
Nonlinear Programming Without a Penalty Function
,”
Math. Program.
0025-5610,
91
(
2
), pp.
239
269
.
36.
Youn
,
B.
,
Choi
,
K.
, and
Park
,
Y.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
125
(
2
), pp.
221
232
.
37.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
225
233
.
38.
Chan
,
K. -Y.
,
Skerlos
,
S. J.
, and
Papalambros
,
P.
, 2007, “
An Adaptive Sequential Linear Programming Algorithm for Optimal Design Problems With Probabilistic Constraints
,”
ASME J. Mech. Des.
0161-8458,
129
(
2
), pp.
140
149
.
39.
Liang
,
J.
,
Mourelatos
,
Z.
, and
Tu
,
J.
, 2004, “
A Single Loop Method for Reliability-Based Design Optimization
,”
Proceedings of the ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Paper No. DETC2004-57255.
40.
Lu
,
X. -P.
,
Li
,
H. -L.
, and
Papalambros
,
P.
, 1984, “
A Design Procedure for the Optimization of Vehicle Suspension
,”
Int. J. Veh. Des.
0143-3369,
5
(
1–2
), pp.
129
142
.
You do not currently have access to this content.