Two types of uncertainty exist in engineering. Aleatory uncertainty comes from inherent variations while epistemic uncertainty derives from ignorance or incomplete information. The former is usually modeled by the probability theory and has been widely researched. The latter can be modeled by the probability theory or nonprobability theories and is much more difficult to deal with. In this work, the effects of both types of uncertainty are quantified with belief and plausibility measures (lower and upper probabilities) in the context of the evidence theory. Input parameters with aleatory uncertainty are modeled with probability distributions by the probability theory. Input parameters with epistemic uncertainty are modeled with basic probability assignments by the evidence theory. A computational method is developed to compute belief and plausibility measures for black-box performance functions. The proposed method involves the nested probabilistic analysis and interval analysis. To handle black-box functions, we employ the first order reliability method for probabilistic analysis and nonlinear optimization for interval analysis. Two example problems are presented to demonstrate the proposed method.

1.
Chong
,
K. P.
,
Saigal
,
S.
,
Thynell
,
S.
, and
Morgan
,
H. S.
, 2002, “
Research Needs
,”
Modeling and Simulation-Based Life Cycle Engineering
,
Spon
,
New York
.
2.
Zang
,
T. A.
,
Hemsch
,
M. J.
,
Hilburger
,
M. W.
,
Kenny
,
S. P.
,
Luckring
,
J. M.
,
Maghami
,
P.
,
Padula
,
S. L.
, and
Stroud
,
W. J.
, 2002, “
Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles
,” NASA/TM-2002-211462.
3.
Cafeo
,
J. A.
,
Donndelinger
,
J. A.
,
Lust
,
R. V.
, and
Mourelatos
,
Z. P.
, 2005, “
The Need for Nondeterministic Approaches in Automotive Design: A Business Perspective
,”
Engineering Design Reliability Handbook
,
E.
Nilolaidis
,
D. M.
Chiocel
, and
S.
Singhal
eds.,
CRC
,
Washington, D.C.
4.
Nikolaidis
,
E.
, 2005, “
Types of Uncertainty in Design Decision Making
,”
Engineering Design Reliability Handbook
,
E.
Nikolaidis
,
D. M.
,
Ghiocel
, and
S.
Singhal
, eds.,
CRC
,
New York
.
5.
Mourelatos
,
Z.
, and
Zhou
,
J.
, 2004, “
Reliability Estimation and Design With Insufficient Data Based on Possibility Theory
,”
10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Albany, New York
.
6.
Oberkampf
,
W. L.
, and
Helton
,
J. C.
, 2002, “
Investigation of Evidence Theory for Engineering Applications
,”
4th Non-Deterministic Approaches Forum
,
Denver, CO
.
7.
Dewooght
,
J.
, 1998, “
Model Uncertainty and Model Inaccuracy
,”
Reliab. Eng. Syst. Saf.
0951-8320,
59
(
2
), pp.
171
185
.
8.
Apley
,
D. W.
,
Liu
,
J.
, and
Chen
,
W.
, 2006, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
4
), pp.
657
1022
.
9.
Mahadevan
,
S.
, and
Rebba
,
R.
, 2006, “
Inclusion of Model Errors in Reliability-Based Optimization
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
4
), pp.
936
944
.
10.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design
,”
ASME J. Mech. Des.
1050-0472,
118
(
4
), pp.
478
485
.
11.
Hernandez
,
G.
,
Simpson
,
T.
,
Allen
,
J.
,
Bascaran
,
E.
,
Avila
,
L.
, and
Salinas
,
F.
, 2001, “
Robust Design of Families of Products With Production Modeling and Evaluation
,”
ASME J. Mech. Des.
1050-0472,
123
(
2
), pp.
183
190
.
12.
Kanukolanu
,
D.
,
Lewis
,
K.
, and
Winer
,
E.
, 2004, “
Robust Design of Coupled Sub-Systems Using Visualization
,”
41st AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
, Jan.
13.
Frey
,
D. D.
, and
Li
,
X.
, 2004, “
Validating Robust Parameter Design Methods
,”
ASME 2004 Design Engineering Technical Conferences and Computer and Information in Engineering Conference
,
Salt Lake City, UT
, Sept. 28–Oct. 2.
14.
Messac
,
A.
, and
Sundararaj
,
G. J.
, 2000, “
A Robust Design Approach Using Physical Programming
,”
38th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
.
15.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment for Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
(
2
), pp.
225
233
.
16.
Allen
,
M.
, and
Maute
,
K.
, 2004, “
Reliability-Based Design Optimization of Aeroelastic Structures
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
4
), pp.
228
242
.
17.
Tu
,
J.
,
Choi
,
K. K.
, and
Young
,
H. P.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
121
(
4
), pp.
557
564
.
18.
Mavris
,
D. N.
,
Bandte
,
O.
, and
DeLaurentis
,
D. A.
, 1999, “
Robust Design Simulation: A Probabilistic Approach to Multidisciplinary Design
,”
J. Aircr.
0021-8669,
36
(
1
), pp.
298
307
.
19.
Gu
,
X.
,
Renaud
,
J. E.
,
Batill
,
S. M.
,
Brach
,
R. M.
, and
Budhiraja
,
A.
, 2000, “
Worst Case Propagated Uncertainty of Multidisciplinary Systems in Robust Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
3
), pp.
190
213
.
20.
Yu
,
X.
, and
Du
,
X.
, 2006, “
Reliability-Based Multidisciplinary Optimization for Aircraft Wing Design
,”
Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and Performance
,
2
(
3/4
), pp.
277
289
.
21.
Soundappan
,
P.
,
Nikolaidis
,
E.
,
Haftka
,
R. T.
,
Grandhi
,
R.
, and
Canfield
,
R.
, 2004, “
Comparison of Evidence Theory and Bayesian Theory for Uncertainty Modeling
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
(
1–3
), pp.
295
311
.
22.
Nikolaidis
,
E.
,
Chen
,
C.
,
Cudney
,
H.
,
Haftka
,
R. T.
, and
Rosca
,
R.
, 2003, “
Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
386
394
.
23.
Ling
,
J. M.
,
Aughenbaugh
,
J. M.
, and
Paredis
,
C. J. J.
, 2006, “
Managing the Collection of Information Under Uncertainty Using Information Economics
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
980
990
.
24.
Du
,
L.
,
Choi
,
K. K.
,
Youn
,
B. D.
, and
Gorsich
,
D.
, 2006, “
Possibility-Based Design Optimization Method for Design Problems With Both Statistical and Fuzzy Input Data
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
928
935
.
25.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2006, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
901
908
.
26.
Bae
,
H.-R.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
, 2006, “
Sensitivity Analysis of Structural Response Uncertainty Propagation Using Evidence Theory
,”
Struct. Multidiscip. Optim.
1615-147X,
31
(
4
), pp.
270
279
.
27.
Agarwal
,
H.
,
Renaud
,
J. E.
,
Preston
,
E. L.
, and
Padmanabhan
,
D.
, 2004, “
Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
(
1–3
), pp.
281
294
.
28.
Bae
,
H.-R.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
, 2004, “
Epistemic Uncertainty Quantification Techniques Including Evidence Theory for Large-Scale Structures
,”
Comput. Struct.
0045-7949,
82
(
13–14
), pp.
1101
1112
.
29.
Klir
,
G. J.
, and
Wierman
,
M. J.
, 1999,
Uncertainty-Based Information—Elements of Generalized Information Theory
,
Physics-Verlag
,
Heidelberg
.
30.
Zhang
,
Y.
, and
der Kiureghian
,
A.
, 1995, “
Two Improved Algorithms for Reliability Analysis
,”
Reliability and Optimization of Structural Systems, Proceedings of the Sixth IFIP WG7.5 Working Conference on Reliability and Optimization of Structural Systems
,
Assisi, Italy
, Sept. 7–9.
31.
Du
,
X.
,
Sudjianto
,
A.
, and
Huang
,
B.
, 2005, “
Reliability-Based Design Under the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
1050-0472,
127
(
6
), pp.
1068
1076
.
32.
Klir
,
G. J.
, 2005,
Uncertainty and Information—Foundations of Generalized Information Theory
,
Wiley
Hoboken, NJ
.
33.
Du
,
X.
, 2006, “
Uncertainty Analysis with Probability and Evidence Theories
,”
The 2006 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
PA
, Sept. 10–13.
34.
Hasofer
,
A. M.
, and
Lind
,
N. C.
, 1974, “
Exact and Invariant Second-Moment Code Format
,”
J. Engrg. Mech. Div.
0044-7951,
100
(
EM1
), pp.
111
121
.
35.
Rackwits
,
R.
, and
Fiessler
,
B.
, 1978, “
Structural Reliability under Combined Random Load Sequences
,”
Comput. Struct.
0045-7949,
9
(
5
), pp.
484
494
.
You do not currently have access to this content.