This paper proposes a synthesis method for rectilinear motion generating spatial mechanism with application to automotive suspension. First, it presents a generic process to synthesize the kinematic chains of a mechanism with the prescribed mobility, and then it deduces the construction criteria of feasible kinematic chains for such a mechanism. The most outstanding advantages of the rectilinear motion generating spatial mechanism used as the independent automotive suspension are that the orientation and position parameters such as kingpin, caster, camber, axis distance, and wheel track are always maintained constant during jounce and rebound. These ideal characteristics are guaranteed by the particular rigid guidance mechanism whose end effector only has one translation along an exact straight line.

1.
Raghavan
,
M.
, 1996, “
Number and Dimensional Synthesis of Independent Suspension Mechanisms
,”
Mech. Mach. Theory
0094-114X,
31
(
8
), pp.
1141
1153
.
2.
Raghavan
,
M.
, 2005, “
Suspension Synthesis for N:1 Roll Center Motion
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
673
678
.
3.
Suh
,
C. H.
, 1989, “
Synthesis and Analysis of Suspension Mechanisms With Use of Displacement Matrices
,” SAE No. 890179.
4.
Simionescu
,
P. A.
, and
Beale
,
D.
, 2002, “
Synthesis and Analysis of the Five-Link Rear Suspension System Used in Automobiles
,”
Mech. Mach. Theory
0094-114X,
37
(
9
), pp.
815
832
.
5.
Murakami
,
T.
,
Uno
,
T.
,
Iwasaki
,
H.
, and
Noguchi
,
H.
, 1989, “
Development of a New Multi-Link Front Suspension
,” SAE No. 890179.
6.
Chakraborty
,
N.
, and
Ghosal
,
A.
, 2004, “
Kinematics of Wheeled Mobile Robots on Uneven Terrain
,”
Mech. Mach. Theory
0094-114X,
39
(
12
), pp.
1273
1287
.
7.
Yan
,
H.-S.
, and
Kuo
,
C.-H.
, 2006, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
364
391
.
8.
Arsenault
,
M.
, and
Boudreau
,
R.
, 2006, “
Synthesis of Planar Parallel Mechanisms While Considering Workspace, Dexterity, Stiffness and Singularity Avoidance
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
69
78
.
9.
Kempe
,
A. B.
, 1877, “
How to Draw a Straight Line, London: Macmillan
,” Cited by
Henderson
,
D. W.
, and
Taimina
,
D.
, http://kmoddl.library.cornell.edu/tutorials/11/http://kmoddl.library.cornell.edu/tutorials/11/
11.
Kumar
,
V.
, 1992, “
Instantaneous Kinematics of Parallel-Chain Robotic Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
114
, pp.
349
358
.
12.
Shigley
,
J. E.
, and
Uicher
,
J. J.
, 1980,
Theory of Machines and Mechanisms
,
McGraw-Hill
,
New York
.
13.
Phillips
,
J. R.
, and
Hunt
,
K. H.
, 1964, “
On the Theorem of Three Axes in the Spatial Motion of Three Bodies
,”
Australian Journal of Applied Science
,
15
, pp.
267
287
.
14.
Waldron
,
K. J.
, 1966, “
The Constraint Analysis of Mechanisms
,”
J. Mech.
0022-2569,
1
, pp.
101
114
.
15.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford
.
16.
Ohwovoriole
,
M. S.
, and
Roth
,
B.
, 1981, “
An Extension of Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
103
, pp.
725
735
.
17.
McCarthy
,
J. M.
, 1990,
An Introduction to Theoretical Kinematics
,
MIT Press
,
Cambridge, MA
.
18.
Rico Martínez
,
J. M.
, and
Duffy
,
J.
, 1992, “
Orthogonal Spaces and Screw Systems
,”
Mech. Mach. Theory
0094-114X,
27
(
4
), pp.
451
458
.
19.
Rico Martínez
,
J. M.
, and
Duffy
,
J.
, 1992. “
Classification of Screw Systems—I. One- and Two-Systems
,”
Mech. Mach. Theory
0094-114X,
27
(
4
), pp.
459
470
.
20.
Rico Martínez
,
J. M.
, and
Duffy
,
J.
, 1992, “
Classification of Screw Systems—II. Three-Systems
,”
Mech. Mach. Theory
0094-114X,
27
(
4
), pp.
471
490
.
21.
Perez
,
A.
, and
McCarthy
,
J. M.
, 2002, “
Bennett’s Linkage and the Cylindroid
,”
Mech. Mach. Theory
0094-114X,
37
(
11
), pp.
1245
1260
.
22.
Bandyopadhyay
,
S.
, and
Ghosal
,
A.
, 2004, “
Analytical Determination of Principal Twists in Serial, Parallel and Hybrid Manipulators Using Dual Vectors and Matrices
,”
Mech. Mach. Theory
0094-114X,
39
(
12
), pp.
1289
1305
.
23.
Kelley
,
C. T.
, 1995,
Iterative Methods for Linear and Nonlinear Equations
,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
25.
Zhao
,
J.-S.
,
Zhou
,
K.
, and
Feng
,
Z.-J.
, 2004, “
A Theory of Degrees of Freedom For Mechanisms
,”
Mech. Mach. Theory
0094-114X,
39
(
6
), pp.
621
643
.
26.
Zhao
,
J.-S.
,
Feng
,
Z.-J.
, and
Dong
,
J.-X.
, 2006, “
Computation of the Configuration Degree of Freedom of a Spatial Parallel Mechanism by Using Reciprocal Screw Theory
,”
Mech. Mach. Theory
0094-114X,
41
(
12
), pp.
1486
1504
.
27.
Maclaurin
,
E. B.
, 2003, “
Compound Strut and Planar Six-Bar Linkage Suspension Systems
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
217
(
3
), pp.
215
219
.
28.
Norton
,
R. L.
, 2001,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.