Engineering design problems frequently involve both discrete and continuous random and design variables, and system reliability may depend on the union or intersection of multiple limit states. Solving reliability-based design optimization (RBDO) problems, where some or all of the decision variables must be integer valued, can be expensive since the computational effort increases exponentially with the number of discrete variables in discrete optimization problems, and the presence of both system and component level reliability makes RBDO more expensive. The presence of discrete random variables in a RBDO problem has usually necessitated the use of Monte Carlo simulation or some other type of enumeration procedure, both of which are computationally expensive. In this paper, the theorem of total probability is used to allow for the use of the first-order reliability method in solving mixed-integer RBDO problems. Single-loop RBDO formulations are developed for three classes of mixed-integer RBDO with both discrete and continuous random variables and component and system-level reliability constraints. These problem formulations can be solved with any appropriate discrete optimization technique. This paper develops, for each of the three problem classes, greedy algorithms to find an approximate solution to the mixed-integer RBDO problem with both component and system reliability constraints and/or objectives. These greedy algorithms are based on the solution of a relaxed formulation and require hardly additional computational expense than that required for the solution of the continuous RBDO problem. The greedy algorithms are verified by branch and bound and genetic algorithms. Also, this paper develops three algorithms, which can allow for calibration of reliability estimation with a more accurate reliability analysis technique. These algorithms are illustrated in the context of a truss optimization problem.

1.
Pu
,
Y.
,
Das
,
P. K.
, and
Faulkner
,
D.
, 1997, “
A Strategy for Reliability-Based Optimization
,”
Eng. Struct.
0141-0296,
19
(
3
), pp.
276
282
.
2.
Li
,
H.
, and
Foschi
,
R. O.
, 1998, “
An Inverse Reliability Method and Its Application
,”
Struct. Safety
0167-4730,
20
(
3
), pp.
257
270
.
3.
Yu
,
X.
,
Chang
,
K.
, and
Choi
,
K. K.
, 1998, “
Probabilistic Structural Durability Prediction
,”
AIAA J.
0001-1452,
36
(
4
), pp.
628
637
.
4.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
557
564
.
5.
Du
,
X.
, and
Chen
,
W.
, 2001, “
A Most Probable Point Based Method for Uncertainty Analysis
,”
J. Design Manuf. Autom.
1532-0375,
4
(
1
), pp.
47
66
.
6.
Lee
,
J. O.
,
Yang
,
Y. S.
, and
Ruy
,
W. S.
, 2002, “
A Comparative Study on Reliability-Index and Target-Performance-Based Probabilistic Structural Design Optimization
,”
Comput. Struct.
0045-7949,
80
, pp.
257
269
.
7.
Cizelj
,
L.
,
Mavko
,
B.
, and
Riesch-Oppermann
,
H.
, 1994, “
Application of First and Second Order Reliability Methods in the Safety Assessment of Cracked Steam Generator Tubes
,”
Nucl. Eng. Des.
0029-5493,
147
, pp.
359
368
.
8.
Zhao
,
Y. G.
, and
Ono
,
T.
, 1999, “
A General Procedure for First/Second-Order Reliability Method (FORM/SORM)
,”
Struct. Safety
0167-4730,
21
, pp.
95
112
.
9.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
Selecting Probabilistic Approaches for Reliability-Based Design Optimization
,”
AIAA J.
0001-1452,
42
(
1
), pp.
124
131
.
10.
Chiralaksanakul
,
A.
, and
Mahadevan
,
S.
, 2004, “
Reliability-Based Design Optimization Methods
,”
Proceedings of DETC’04
,
Salt Lake City, UT
, Sept. 28–Oct. 2, Paper No. DETC04/DAC-57456.
11.
Wu
,
Y. T.
, and
Wang
,
W.
, 1998, “
Efficient Probabilistic Design by Converting Reliability Constraints to Approximately Equivalent Deterministic Constraints
,”
J. Integr. Des. Process Sci.
1092-0617,
2
(
4
), pp.
13
21
.
12.
Du
,
X.
, and
Chen
,
W.
, 2000, “
Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
122
, pp.
385
394
.
13.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
225
233
.
14.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
, 2004, “
A Single-Loop Method for Reliability-Based Design Optimization
,”
Proceedings of DETC’04
,
Salt Lake City, UT
, Sept. 28–Oct. 2, Paper No. DETC04/DAC-57255.
15.
Yang
,
R. J.
, and
Gu
,
L.
, 2004, “
Experience With Approximate Reliability-Based Optimization Methods
,”
Struct. Multidiscip. Optim.
1615-147X,
26
, pp.
152
159
.
16.
Wu
,
Y. T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
, 1990, “
Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions
,”
AIAA J.
0001-1452,
28
(
9
), pp.
1663
1669
.
17.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
, 1993, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
1050-0472,
115
, pp.
74
80
.
18.
Jung
,
D. H.
, and
Lee
,
B. C.
, 2002, “
Development of a Simple and Efficient Method for Robust Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
2201
2215
.
19.
Yu
,
J. C.
, and
Ishii
,
K.
, 1998, “
Design for Robustness Based on Manufacturing Variation Patterns
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
196
202
.
20.
Yu
,
J. C.
, and
Ho
,
W. C.
, 2000, “
Modified Sequential Programming for Feasibility Robustness of Constrained Design Optimization
,”
Proceedings of DETC’00
,
Baltimore, MD
, Sept. 10–13, Paper No. DETC00/DAC-14531.
21.
Gunawan
,
S.
, and
Azarm
,
S.
, 2005, “
A Feasibility Robust Optimization Method Using Sensitivity Region Concept
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
858
865
.
22.
Roy
,
R.
,
Parmee
,
I. C.
, and
Purchase
,
G.
, 1996, “
Sensitivity Analysis of Engineering Designs Using Taguchi’s Methodology
,”
Proceedings of DETC’96
,
Irvine, CA
, Aug. 18–22, Paper No. DETC96/DAC-1455.
23.
Lee
,
K. H.
, and
Park
,
G. J.
, 2002, “
Robust Optimization in Discrete Design Space for Constrained Problems
,”
AIAA J.
0001-1452,
40
(
4
), pp.
774
780
.
24.
Stocki
,
R.
,
Kolanek
,
K.
,
Jendo
,
S.
, and
Kleiber
,
M.
, 2001, “
Study on Discrete Optimization Techniques in Reliability-Based Optimization of Truss Structures
,”
Comput. Struct.
0045-7949,
79
, pp.
2235
2247
.
25.
Gunawan
,
S.
, and
Papalambros
,
Y.
, 2007, “
Reliability Optimization With Mixed Continuous-Discrete Random Variables and Parameters
,”
J. Mech. Des.
1050-0472,
129
(
2
), pp.
158
165
.
26.
Du
,
X.
, and
Sudjianto
,
A.
, 2003, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
Proceedings of DETC’03
,
Chicago, IL
, Sept. 2–6, Paper No. DETC03/DAC-48709.
27.
Royset
,
J. O.
,
Der Kiureghian
,
A.
, and
Polak
,
E.
, 2003,
Algorithms for Reliability-Based Optimal Design
Lecture Notes
Vol.
16
,
AMAS
,
Warsaw, Poland
.
28.
Ditlevsen
,
O.
, 1979, “
Narrow Reliability Bounds for Structural Systems
,”
J. Struct. Mech.
0360-1218,
7
(
4
), pp.
453
472
.
29.
Mahadevan
,
S.
, and
Dey
,
A.
, 1998, “
Ductile System Reliability Analysis Using Adaptive Importance Sampling
,”
Struct. Safety
0167-4730,
20
, pp.
137
154
.
30.
Ambartzumian
,
R.
,
Der Kiureghian
,
A.
,
Ohanian
,
V.
, and
Sukiasian
,
H.
, 1997, “
Multinormal Probability by Sequential Conditioned Importance Sampling
,” Advances in Safety and Reliability, Proceedings of ESREL ’97, Jun. 17–20,
Lisbon
, Vol.
2
, pp.
1261
1268
.
31.
Hohenbichler
,
M.
, and
Rackwitz
,
R.
, 1987, “
First-Order Concepts in Systems Reliability
,”
Struct. Safety
0167-4730,
1
, pp.
177
188
.
32.
Pandey
,
M. D.
, 1998, “
An Effective Approximation to Evaluate Multinormal Integrals
,”
Struct. Safety
0167-4730,
20
, pp.
51
67
.
33.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2002,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
34.
Fraser
,
A. S.
, 1957, “
Simulation of Genetic Systems by Automatic Digital Computers. I. Introduction
,”
Aust. J. Biol. Sci.
0004-9417,
10
, pp.
484
491
.
35.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
, 1983, “
Optimization by Simulated Annealing
,”
Science
0036-8075,
220
(
4598
), pp.
671
680
.
36.
Cerny
,
V.
, 1985, “
A Thermodynamical Approach to the Travelling Salesman Problem: An Efficient Simulation Algorithm
,”
J. Optim. Theory Appl.
0022-3239,
45
, pp.
41
51
.
37.
Glover
,
F.
, 1989, “
Tabu Search—Part I
,”
ORSA J. Comput.
0899-1499,
3
, pp.
190
206
.
38.
Glover
,
F.
, 1990, “
Tabu Search—Part II
,”
ORSA J. Comput.
0899-1499,
1
, pp.
4
32
.
39.
Land
,
A. H.
, and
Doig
,
A. G.
, 1960, “
An Automatic Method for Solving Discrete Programming Problems
,”
Econometrica
0012-9682,
28
, pp.
497
520
.
40.
Bertsekas
,
D.
, 1976,
Dynamic Programming and Stochastic Control
,
Academic
,
New York
.
41.
Cormen
,
T.
,
Leiserson
,
C.
,
Rivest
,
R.
, and
Stein
,
C.
, 2001,
Introduction to Algorithms
,
MIT
,
Cambridge, MA
.
42.
McDonald
,
M.
, and
Mahadevan
,
S.
, 2008, “
Design Optimization With System-Level Reliability Constraints
,”
ASME J. Mech. Des.
1050-0472,
130
(
2
), p.
021403
.
43.
Madsen
,
H.
, and
Hansen
,
P.
, 1992, “
A Comparison of Some Algorithms for Reliability Based Structural Optimization and Sensitivity Analysis
,” Reliability and Optimization of Structural Systems, Proceedings of the Fourth IFIP WG 7.5 Conference,
Munich, Germany
, 11–13 Sept.,
R.
Rackwitz
and
P.
Thoft-Christensen
, eds.,
Springer-Verlag
,
Berlin
, pp.
443
451
.
44.
Chen
,
X.
,
Hasselman
,
T. K.
, and
Neill
,
D. J.
, 1997, “
Reliability Based Structural Design Optimization for Practical Applications
,” Proceedings of the 38th IAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference,
Kissimmee, FL
, Paper No. AIAA-97-1403.
45.
Agarwal
,
H.
, and
Renaud
,
J.
, 2004, “
A Unilevel Method for Reliability Based Design Optimization
,” Proceedings of 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, Paper No. AIAA-2004-2029.
46.
Kuschel
,
N.
, and
Rackwitz
,
R.
, 1997, “
Two Basic Problems in Reliability-Based Structural Optimization
,”
Math. Methods Oper. Res.
0209-6137,
46
, pp.
309
333
.
47.
Kuschel
,
N.
, and
Rackwitz
,
R.
, 2000, “
Time-Variant Reliability-Based Structural Optimization Using SORM
,”
Optim.
0233-1934,
47
, pp.
349
368
.
48.
Toyoda
,
Y.
, 1975, “
A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems
,”
Manage. Sci.
0025-1909,
21
(
12
), pp.
1417
1427
.
49.
Ditlevsen
,
O.
, and
Madsen
,
H. O.
, 1996,
Structural Reliability Methods
,
Wiley
,
New York
.
You do not currently have access to this content.