This paper addresses two important fundamental areas in product family formulation that have recently begun to receive great attention. First is the incorporation of market demand that we address through a data mining approach where realistic customer preference data are translated into performance design targets. Second is product architecture reconfiguration that we model as a dynamic design entity. The dynamic approach to product architecture optimization differs from conventional static approaches in that a product architecture is not fixed at the initial stage of product design, but rather evolves with fluctuations in customer performance preferences. The benefits of direct customer input in product family design will be realized through the cell phone product family example presented in this work. An optimal family of cell phones is created with modularity decisions made analytically at the engineering level that maximize company profit.

1.
Jiao
,
J.
, and
Zhang
,
Y.
, 2005, “
Product Portfolio Identification Based on Association Rule Mining
,”
Comput.-Aided Des.
0010-4485,
37
(
2
), pp.
149
172
.
2.
Hsu
,
H.
, and
Wang
,
W.
, 2000, “
Dynamic Programming for Delayed Product Differentiation
,”
Eur. J. Oper. Res.
0377-2217,
156
, pp.
183
193
.
3.
Simpson
,
T. W.
, 2004, “
Product Platform Design and Customization: Status and Promise
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
18
, pp.
3
20
.
4.
Scott
,
M. J.
,
Arenillas
,
J.
,
Simpson
,
T. W.
,
Valliyappan
,
S.
, and
Allada
,
V.
, 2006, “
Towards a Suite of Problems for Comparison of Product Platform Design Methods: A Proposed Classification
,”
Proceedings of DETC 06, 2006 ASME Design Engineering Technical Conferences
,
Philadelphia, PA
, Paper No. DETC2006/DAC-99289.
5.
Cooper
,
A. B.
,
Georgiopoulos
,
P.
,
Kim
,
H. M.
, and
Papalambros
,
P. Y.
, 2006, “
Analytical Target Setting: An Enterprise Context in Optimal Product Design
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
4
13
.
6.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
474
480
.
7.
de Weck
,
O.
,
Suh
,
E.
, and
Chang
,
D.
, 2003, “
Product Family and Platform Portfolio Optimization
,”
Proceedings of DETC03, 2003 ASME Design Engineering Technical Conferences
,
Chicago, II
, Paper No. DETC03/DAC-48721.
8.
Gonzales-Zugasti
,
J. P.
,
Otto
,
K. N.
, and
Baker
,
J. D.
, 2001, “
Assessing Value in Platformed Product Family Design
,”
Res. Eng. Des.
0934-9839,
13
(
1
), pp.
30
41
.
9.
Desai
,
P.
,
Kekre
,
S.
,
Radhakrishnan
,
S.
, and
Srinivasan
,
K.
, 2001, “
Product Differentiation and Commonalityin Design: Balancing Revenue and Cost Drivers
,”
Manage. Sci.
0025-1909,
47
(
1
), pp.
37
51
.
10.
Kim
,
K.
, and
Chhajed
,
D.
, 2000, “
Commonality in Product Design: Cost Saving, Valuation Change and Cannibalization
,”
Eur. J. Oper. Res.
0377-2217,
125
(
3
), pp.
602
621
.
11.
Agard
,
B.
, and
Kusiak
,
A.
, 2004, “
Data Mining Based Methodology for the Design of Product Families
,”
Int. J. Prod. Res.
0020-7543,
42
(
15
), pp.
2955
2969
.
12.
Moon
,
S. K.
,
Kumara
,
S. R. T.
, and
Simpson
,
T. W.
, 2006, “
Data Mining and Fuzzy Clustering to Support Product Family Design
,”
Proceedings of DETC 06, 2006 ASME Design Engineering Technical Conferences
,
Philadelphia, PA
, Paper No. DETC2006/DAC-99287.
13.
2002,
Data Mining for Design and Manufacturing
,
Dan
Braha
, ed.,
Springer
.
14.
McEntire
,
J.
, 2003,
D2K Toolkit User Manual
, National Center for Supercomputing Applications (NCSA).
15.
Cook
,
H. E.
, 1997,
Product Management: Value, Quality, Cost, Price, Profit, and Organization
,
Chapman and Hall
,
London
.
16.
Dean
,
D. H.
, 2004, “
Evaluating Potential Brand Associations Through Conjoint Analysis and Market Simulation
,”
J. Product Brand Management
,
13
(
7
), pp.
506
513
.
17.
Rish
,
I.
, 2001, “
An Empirical Study of the Naive Bayes Classifier
,”
IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence
.
18.
Zhang
,
H.
,
Ling
,
C.
, and
Zhao
,
Z.
, 2000, “
The Learnability of Naive Bayes
,”
Canadian AI2000, LNAI 1822
, pp.
432
441
.
19.
Meretakis
,
D.
, and
Wuthrich
,
B.
, 1999, “
Extending Naive Bayes Classifiers Using Long Itemsets
,”
Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp.
164
174
.
20.
Flack
,
P. A.
, and
Lachiche
,
N.
, 2004, “
Naïve Bayes Classification of Structured Data
,”
Mach. Learn.
0885-6125,
57
(
3
), pp.
233
269
.
21.
Kleinberg
,
E. M.
, 2000,
Lecture Notes in Computer Science
,
Springer
,
Berlin
, Vol.
1857
.
22.
Degroot
,
M.
, 1970,
Optimal Statistical Decisions
,
McGraw-Hill
,
New York
.
23.
Sparacino
,
G.
,
Tombolato
,
C.
, and
Cobelli
,
C.
, 2000, “
Maximum-Likelihood Versus Maximum a Posteriori Parameter Estimation of Physiological System Models: The c-Peptide Impulse Response Case Study
,”
IEEE Trans. Biomed. Eng.
0018-9294,
47
(
6
), pp.
801
811
.
24.
Fayyad
,
U.
and
Uthurusamy
,
R.
, 2007, “
Data Mining and Knowledge Discovery in Databases
,” Communications of the ACM, 39(11), p. 24(3).
25.
Tucker
,
C.
, and
Kim
,
H. M.
, 2006, “
Cell Phone Customer Survey: Online Interactive User Interface Created Using Webtools
,” https://webtools.uiuc.edu/survey/Secure?id=5617516https://webtools.uiuc.edu/survey/Secure?id=5617516.
26.
Boulicaut
,
J.
,
Esposito
,
F.
,
Giannotti
,
F.
, and
Pedreschi
,
D.
, 2004,
Knowledge Discovery in Databases: PKDD 2004
,
Springer
,
New York
.
27.
Campos
,
M.
,
Stengard
,
P.
, and
Milenova
,
B.
, 2005, “
Data-Centric Automated Data Mining
,”
Fourth International Conference on Machine Learning and Applications
.
28.
Holmstrom
,
K.
,
Goran
,
A. O.
, and
Edvall
,
M. M.
, 2006,
Users Guide for TOMLAB/MINLP
, Tomlab Optimization, Tomlab Optimization Inc.
29.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
, 2003, “
Analytical Target Cascading in Automotive Vehicle Design
,”
ASME J. Mech. Des.
1050-0472,
125
(
3
), pp.
481
489
.
30.
Canback
,
D.
, 2003, “
Diseconomies of Scale in Large Corporations
,” Technical description, Canback Dangel Predictive Analytics Advisors, 10 Derne Street, Boston, MA 02114.
31.
Milliken and Company
, 2006, “
Cost Savings Benefit of Manufacturing
,” private communication.
32.
Cell Phone Battery Warehouse
. Standby and talk times. 2006, http://www.batteries4less.com/http://www.batteries4less.com/.
33.
Neuvo
,
Y.
2004, “
Cellular Phones as Embedded Systems
,”
IEEE International Solid-State Circuits Conference
.
34.
Buchmann
,
I.
, 1999, “
Battery Mystery Solved: Why Batteries for Digital Cell Phones Fail
,”
Batteries Conference on Applications and Advances
, pp.
359
362
.
35.
Klepper
,
M.
,
Miller
,
P.
, and
Miller
,
L.
, 2003, “
Advanced Display Technologies
, Printing Industry Center at Rochester Institute of Technology (RIT).
36.
1999, The Math Works, Inc., Natick, MA,
Optimization Toolbox for Use with MATLAB
, version 2.
37.
Berry
,
S.
, and
Pakes
,
A.
, 2007, “
The Pure Characteristics Demand Model
,” International Economic Review, 48(4), pp. 1193–1225
You do not currently have access to this content.