This paper uses the concept of bisecting linear line complex of the two position theory in kinematics to present a geometric foundation for finite displacement screw systems, with an emphasis on incompletely specified displacement of points. It is shown that the bisecting linear line complex arising from the finite displacement of points is subject to a reciprocal condition if a specific definition of pitch of finite screws is used. The screw systems of finite displacements are then characterized in terms of intersections of bisecting linear line complexes. The line varieties corresponding to the two-system and four-system associated with finite displacements of two points and a point, respectively, are illustrated. This paper demonstrates that the bisecting linear line complex provides a geometric framework for studying finite and infinitesimal kinematics.

1.
Parkin
,
I. A.
, 1992, “
A Third Conformation With the Screw Systems: Finite Twist Displacements of a Directed Line and Point
,”
Mech. Mach. Theory
0094-114X,
27
, pp.
177
188
.
2.
Huang
,
C.
, and
Roth
,
B.
, 1994, “
Analytic Expressions for the Finite Screw Systems
,”
Mech. Mach. Theory
0094-114X,
29
, pp.
207
222
.
3.
Hunt
,
K. H.
, and
Parkin
,
I. A.
, 1995, “
Finite Displacements of Points, Planes and Lines Via Screw Theory
,”
Mech. Mach. Theory
0094-114X,
30
, pp.
177
192
.
4.
Huang
,
C.
, 1994, “
On the Finite Screw System of the Third Order Associated With a Revolute-Revolute Chain
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
875
883
.
5.
Huang
,
C.
, and
Ravani
,
B.
, 2006, “
On the Line Geometry of Finite Screw Systems and Point Displacements
,”
Proceedings of the ASME 2006 International Design Engineering Technical Conferences
,
Philadelphia, PA
, September 10–13.
6.
Dai
,
J. S.
, 2006, “
An Historical Review of the Theoretical Development of Rigid Body Displacements From Rodrigues Parameters to the Finite Twist
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
41
52
.
7.
Huang
,
C.
, 1997, “
Notes on Screw Product Operations in the Formulations of Successive Finite Displacements
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
434
439
.
8.
Tsai
,
L. W.
, and
Roth
,
B.
, 1973, “
Incompletely Specified Displacements: Geometry and Spatial Linkage Synthesis
,”
ASME J. Eng. Ind.
0022-0817,
95
(
B
), pp.
603
611
.
9.
Phillips
,
J.
, 1984,
Freedom in Machinery
, Vols.
1 and 2
,
Cambridge University Press
,
Cambridge
.
10.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Clarendon
,
Oxford
.
11.
Pottmann
,
H.
,
Peternell
,
M.
, and
Ravani
,
B.
, 1999, “
An Introduction to Line Geometry With Applications
,”
Comput.-Aided Des.
0010-4485,
31
, pp.
3
16
.
12.
Pottmann
,
H.
, and
Wallner
,
J.
, 2001,
Computational Line Geometry
,
Springer-Verlag
,
Berlin
.
13.
Griffis
,
M.
, and
Rico
,
J. M.
, 2003, “
The Nut in Screw Theory
,”
J. Rob. Syst.
0741-2223,
20
(
8
), pp.
437
476
.
14.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland
,
Amsterdam
.
15.
Eberharter
,
J. K.
, and
Ravani
,
B.
, 2004, “
Kinematic Registration Using Line Geometry
,”
Proceedings of the ASME 2004 Design Engineering Technical Conferences and Computer and Information in Engineering Conference
,
Salt Lake City, UT
, Sept. 28–Oct. 2.
16.
Eberharter
,
J. K.
, 2005, “
Computational and Line-Geometric Methods for Rigid Body Motions
,” Ph.D. thesis, University of California, Davis.
17.
Dandurand
,
A.
, 1984, “
The Rigidity of Compound Spatial Grids
,”
Structural Topology
,
10
, pp.
43
55
.
18.
Merlet
,
J.-P.
, 1989, “
Singular Configurations of Parallel Manipulators and Grassmann Geometry
,”
Int. J. Robot. Res.
0278-3649,
8
(
5
), pp.
45
56
.
19.
Hao
,
F.
, and
McCarthy
,
J. M.
, 1998, “
Conditions for Line-Based Singularities in Spatial Platform Manipulators
,”
J. Rob. Syst.
0741-2223,
15
(
1
), pp.
43
55
.
20.
McCarthy
,
J. M.
, 2000,
Geometric Design of Linkages
(
Interdisciplinary Applied Mathematics
),
Springer-Verlag
,
New York
.
21.
Study
,
E.
, 1891, “
Von den Bewegungen und Umlegungen
,”
Math. Ann.
0025-5831,
39
, pp.
441
564
.
You do not currently have access to this content.