Abstract

This paper deals with the conceptual and kinematic designs of a 5-degree of freedom (DOF) reconfigurable hybrid robot. The robot is composed of a 2-DOF parallel spherical mechanism that is serially connected with a 3-DOF open loop kinematic chain via a prismatic joint. Somewhat similar to the well-known Tricept robot, this design has the merit that a relatively large workspace/limb–stroke ratio can be achieved thanks to the decomposition of the motions of the output link into the 2-DOF rotation and 1-DOF translation. As with the Tricept, the robot is well suited for use as a plug-and-play module to configure different machines. The dimensional synthesis of the 2-DOF spherical parallel mechanism is carried out by the monotonical analysis of the design variables versus a global conditioning index represented by the mean of the minimum singular value of the Jacobian, leading to the solution of two nonlinear equations due to the limb length constraint and nearly axial symmetry requirement of the kinematic performance. The results of the dimensional synthesis are given via examples.

1.
Huang
,
T.
,
Li
,
M.
,
Wu
,
M. L.
, et al.
, 2005, “
The Criteria for Conceptual Design of Reconfigurable PKM Modules—Theory and Application
,”
Chin. J. Mech. Eng.
0577-6686,
41
(
8
), pp.
36
41
(in Chinese).
2.
Tsai
,
L.-W.
, 1999,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
, New York.
3.
Neumann
,
K. E.
, 1988, “
Robot
,” US Patent No. 4732525.
4.
Neumann
,
K. E.
, 2001, “
System and Method for Controlling a Robot
,” US Patent No. 6301525, 2001.
5.
Neumann
,
K. E.
, 2004, “
Next Generation Tricept—A True Revolution in Paralle Kinematics
,”
Proceedings of the 4th Chemnitz Parallel Kinematics Seminar
, Zwickau, Germany, pp.
591
594
.
6.
Siciliano
,
B.
, 1999, “
The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-loop Direct Kinematics Algorithm
,”
Robotica
0263-5747,
17
(
4
), pp.
437
455
.
7.
Zhang
,
D.
, and
Gosselin
,
C. M.
, 2002,
Kinetostatic Analysis and Design Optimization of the Tricept Machine Tool Family
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
3
), pp.
725
733
.
8.
Joshi
,
S. A.
, and
Tsai
,
L.-W.
, 2003, “
A Comparison Study of Two 3-DOF Parallel Manipulators: One with Three and the Other with Four supporting Legs
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
2
), pp.
200
209
.
9.
Joshi
,
S. A.
, and
Tsai
,
L.-W.
, 2003, “
The Kinematics of a Class of 3-DOF, 4 Legged Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
125
(
1
), pp.
52
58
.
10.
Tonshoff
,
H. K.
,
Grendel
,
H.
, and
Kaak
,
R.
, 1999, “
Structure and Characteristics of the Hybrid Manipulator George V
,”
Parallel Kinematic Machines
,
C. R.
Boer
,
L.
Molinari-Tosatti
, and
K. S.
Smith
, eds.,
Springer
, London, UK, pp.
365
376
.
11.
Huang
,
T.
,
Li
,
M.
, and
Li
,
Z. X.
, 2004, A 5-DOF Hybrid Robot,” Patent Cooperation Treaty(PCT), Int. Appl. No. PCT/CN2004/000479.
12.
Huang
,
T.
,
Li
,
M.
,
Zhao
,
X. M.
,
Mei
,
J. P.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
, 2005, “
Conceptual Design and Dimensional Synthesis for a 3-DOF Module of the TriVariant–A Novel 5-DOF Reconfigurable Hybrid Robot
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
3
), pp.
449
456
.
13.
Li
,
M.
,
Huang
,
T.
,
Mei
,
J. P.
,
Zhao
,
X. M.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
, 2005, “
Dynamic Formulation and Performance Comparison of the 3-DOF Modules of Two Reconfigurable PKMs — The Tricept and the TriVariant
,”
ASME J. Mech. Des.
1050-0472,
127
(
6
), pp.
1129
1136
.
14.
Li
,
M.
,
Huang
,
T.
,
Zhao
,
X. M.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
, 2005, “
Conceptual Design and Dimensional Synthesis of a Reconfigurable Hybrid Robot
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
3
), pp.
647
653
.
15.
Zanganeh
,
K.
, and
Angeles
,
J.
, 1997, “
Kinematic Isotropy and the Optimum Design of Parallel Manipulators
,”
Int. J. Robot. Res.
0278-3649,
6
(
2
), pp.
185
197
.
16.
Huang
,
T.
,
Whitehouse
,
D. J.
, and
Wang
,
J. S.
, 1998, “
Local Dexterity, Optimal Architecture and Design Criteria of Parallel Machine Tools
,”
CIRP Ann.
0007-8506,
47
(
1
), pp.
347
351
.
17.
Angeles
,
J.
, 2003,
Fundamentals of Robotic Mechanical Systems, Theory, Methods, and Algorithms
, 2nd ed.,
Springer
, New York.
18.
Salisbury
,
J. K.
, and
Craig
,
J. J.
, 1982, “
Articulated Hands: Force and Kinematic Issues
,”
Int. J. Robot. Res.
0278-3649,
1
(
1
), pp.
4
17
.
19.
Gosselin
,
C. M.
, and
Angeles
,
J.
, 1991, “
A Globe Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
1050-0472,
113
(
3
), pp.
220
226
.
20.
Singh
,
J. R.
, and
Rastegar
,
J.
, 1995, “
Optimal Synthesis of Robot Manipulators based on Global Kinematic Parameters
,”
Mech. Mach. Theory
0094-114X,
30
(
4
), pp.
569
580
.
21.
Angeles
,
J.
, and
Khan
,
W. A.
, 2006, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
168
178
.
22.
Merlet
,
J. P.
, 2006, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
199
206
.
You do not currently have access to this content.