The hybrid cellular automaton (HCA) algorithm is a methodology developed to simulate the process of structural adaptation in bones. This methodology incorporates a distributed control loop within a structure in which ideally localized sensor cells activate local processes of the formation and resorption of material. With a proper control strategy, this process drives the overall structure to an optimal configuration. The controllers developed in this investigation include two-position, proportional, integral and derivative strategies. The HCA algorithm combines elements of the cellular automaton (CA) paradigm with finite element analysis (FEA). This methodology has proved to be computationally efficient to solve topology optimization problems. The resulting optimal structures are free of numerical instabilities such as the checkerboarding effect. This investigation presents the main features of the HCA algorithm and the influence of different parameters applied during the iterative optimization process.

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Optimal Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
17
, pp.
197
224
.
2.
Theocaris
,
P. S.
, and
Stavroulakis
,
G. E.
, 1999, “
Optimal Material Design in Composites: An Iterative Approach Based on Homogenized Cells
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
169
, pp.
31
42
.
3.
Allaire
,
G.
, 2002, “
Shape Optimization by the Homogenization Method
,” Vol.
146
of
Applied Mathematical Sciences
,
Springer-Verlag
,
New York
.
4.
Bendsøe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
0934-4373,
1
, pp.
193
200
.
5.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
, 1991, “
The COC Algorithm, Part II: Topological, Geometry and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
, pp.
197
224
.
6.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
, 2001, “
Topology Optimization of Continuum Structures: A Review
,”
Appl. Mech. Rev.
0003-6900,
54
, pp.
331
390
.
7.
Rozavany
,
G. I. N.
, 2001, “
Aims, Scope, Methods, History and Unified Terminology of Computer-Aided Topology Optimization in Structural Mechanics
,”
Optim. Eng.
1389-4420,
21
, pp.
90
108
.
8.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization Theory, Method and Applications
,
Springer-Verlag
,
New York
.
9.
Schmit
,
L. A.
, and
Farsi
,
B.
, 1974, “
Some Approximation Concepts for Structural Synthesis
,”
AIAA J.
0001-1452,
12
, pp.
692
699
.
10.
Schmit
,
L. A.
, and
Miura
,
H.
, 1976, “
Approximation Concepts for Efficient Structural Synthesis
,” NASA CR–2552.
11.
Vanderplaats
,
G. N.
, and
Salajegheh
,
E.
, 1989, “
A New Approximation Method for Stress Constraints in Structural Synthesis
,”
AIAA J.
0001-1452,
27
, pp.
352
358
.
12.
Svanberg
,
K.
, 1987, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
359
373
.
13.
Venkayya
,
V. B.
, 1989, “
Optimality Criteria: A Basis for Multidisciplinary Design Optimization
,”
Comput. Mech.
0178-7675,
5
, pp.
1
21
.
14.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Gollub
,
W.
, 1990, “
Continuum-Type Optimality Criteria Methods for Large Finite-Element Systems With a Displacement Constraint
,”
Struct. Optim.
0934-4373,
2
, pp.
77
104
.
15.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an Optimal Property of Compliant Topologies
,”
Optim. Eng.
1389-4420,
19
, pp.
36
49
.
16.
Sigmund
,
O.
, and
Peterson
,
J.
, 1998, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Optim.
0934-4373,
16
, pp.
68
75
.
17.
Tovar
,
A.
,
Niebur
,
G. L.
,
Sen
,
M.
, and
Renaud
,
J. E.
, 2004, “
Bone Structure Adaptation as a Cellular Automaton Optimization Process
,” in
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Palm Springs
,
CA
.
18.
Tovar
,
A.
, 2004, “
Bone Remodeling as a Hybrid Cellular Automaton Optimization Process
,” Doctor of philosophy, University of Notre Dame, Aerospace and Mechanical Engineering.
19.
Weiner
,
N.
, and
Rosenblunth
,
A.
, 1946, “
The Mathematical Formulation of the Problem of Conduction of Impulses in a Network of Connected Excitable Elements, Specifically in Cardiac Mucle
,”
Arch. Inst. Cardiol. Mex
0020-3785,
1
, pp.
205
265
.
20.
Burks
,
A. W.
, 1970,
Essays on Cellular Automata
, chapter in
Von Neumann’s self-reproducing automata
,
University of Illinois Press
,
Chicago, IL
, pp.
3
64
.
21.
Chopard
,
B.
, and
Droz
,
M.
, 1998,
Cellular Automata Modeling of Physical Systems
,
Cambridge University Press
.
22.
Wolfram
,
S.
, 2002,
A New Kind of Science
,
Wolfram Media
.
23.
Inou
,
N.
,
Shimotai
,
N.
, and
Uesigi
,
T.
, 1994, “
A Cellular Automaton Generating Topological Structures
,” in
Proceedings of the 2nd European Conference on Smart Structures and Materials
, pp.
47
50
.
24.
Inou
,
N.
,
Uesugi
,
T.
,
Iwasaki
,
A.
, and
Ujihashi
,
S.
, 1998, “
Self-Organization of Mechanical Structure by Cellular Automata
,”
Key Eng. Mater.
1013-9826,
145-149
, pp.
1115
1120
.
25.
Kita
,
E.
, and
Toyoda
,
T.
, 2000, “
Structural Design Using Cellular Automata
,”
Struct. Multidiscip. Optim.
1615-147X,
19
, pp.
64
73
.
26.
Tatting
,
B.
, and
Gürdal
,
Z.
, 2000, “
Cellular Automata for Design of Two-Dimensional Continuum Structures
,” in
Proceedings of 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
.
27.
Abdalla
,
M. M.
, and
Gürdal
,
Z.
, 2002, “
Structural Design Using Optimality Based Cellular Automata
,” in
Proceedings of 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
.
28.
Kim
,
S.
,
Abdalla
,
M. M.
,
Gürdal
,
Z.
, and
Jones
,
M.
, 2004, “
Multigrid Accelerated Cellular Automata for Structural Design Optimization: A 1-d Implementation
,” in
45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Palm Springs
,
CA
.
29.
Abdalla
,
M. M.
, and
Gürdal
,
Z.
, 2004, “
Strctural Design Using Cellular Automata for Eigenvalue Problems
,”
Struct. Multidiscip. Optim.
1615-147X,
26
, pp.
200
208
.
30.
Hajela
,
P.
, and
Kim
,
B.
, 2001, “
On the Use of Energy Minimization for ca Based Analysis in Elasticity
,”
Struct. Multidiscip. Optim.
1615-147X,
23
, pp.
24
33
.
31.
Huiskes
,
R.
,
Weinans
,
H.
,
Grootenboer
,
J.
,
Dalstra
,
M.
,
Fudala
,
M.
, and
Slooff
,
T. J.
, 1987, “
Adaptive Bone Remodelling Theory Applied to Prosthetic-Design Analysis
,”
J. Biomech.
0021-9290,
20
, pp.
1135
1150
.
32.
Carter
,
D. R.
, 1987, “
Mechanical Loading History and Skeletal Biology
,”
J. Biomech.
0021-9290,
20
, pp.
1095
1105
.
33.
Martin
,
R. B.
,
Burr
,
D. B.
, and
Sharkey
,
N. A.
, 1998,
Skeletal Tissue Mechanics
,
Springer-Verlag
,
New York
.
34.
Hart
,
R. T.
, 2001, “
Bone Modeling and Remodeling: Theories and Computation
,” in
Bone Mechanics Handbook
, edited by
S. C.
Cowin
,
CRC Press
,
Boca Raton, FL
.
35.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
36.
Patnaik
,
S. N.
, and
Hopkins
,
D. A.
, 1998, “
Optimality of a Fully Stress Design
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
165
, pp.
215
221
.
37.
Shearer
,
J. L.
,
Kulakowski
,
B. T.
, and
Gardner
,
J. F.
, 1997,
Dynamic Modeling and Control of Engineering Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
, 2nd ed.
38.
Barr
,
M.
, 2002, “
Closed-Loop Control
,”
Embedded Systems Programming
, August, pp.
55
56
.
39.
Hart
,
R. T.
,
Davy
,
D. T.
, and
Heiple
,
K. G.
, 1984, “
Mathematical Modeling and Numerical Solutions for Functionally Dependent Bone Remodeling
,”
Calcif. Tissue Int.
0171-967X,
36
(Suppl. 1), pp.
S104
-
S109
.
40.
Beaupré
,
G. S.
,
Orr
,
T. E.
, and
Carter
,
D. R.
, 1990a, “
An Approach for Time-Dependent Bone Modeling and Remodeling—Application: A Preliminary Remodeling Simulation
,”
J. Orthop. Res.
0736-0266,
8
, pp.
662
670
.
41.
Beaupré
,
G. S.
,
Orr
,
T. E.
, and
Carter
,
D. R.
, 1990b, “
An Approach for Time-Dependent Bone Modeling and Remodeling—Theoretical Development
,”
J. Orthop. Res.
0736-0266,
8
, pp.
651
661
.
42.
Weinans
,
H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
, 1992, “
The Behavior of Adaptive Bone-Remodeling Simulation Models
,”
J. Biomech.
0021-9290,
25
, pp.
1425
1441
.
43.
Mullender
,
M. G.
,
Huiskes
,
R.
, and
Weinans
,
H.
, 1994, “
A Physiological Approach to the Simulation of Bone Remodelling as a Self-Organizational Control Process
,”
J. Biomech.
0021-9290,
27
, pp.
1389
1394
.
44.
Mullender
,
M. G.
, and
Huiskes
,
R.
, 1995, “
Proposal for the Regulatory Mechanism of Wolff’s Law
,”
J. Orthop. Res.
0736-0266,
13
, pp.
503
512
.
45.
Turner
,
C. H.
, 1999, “
Toward a Mathematical Description of Bone Biology: The Principle of Cellular Accommodation
,”
Calcif. Tissue Int.
0171-967X,
65
, pp.
466
471
.
46.
Huiskes
,
R.
, 2000, “
If Bone is the Answer, Then What is the Question?
,”
J. Anat.
0021-8782,
197
, pp.
145
156
.
47.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 1999, “
Material Interpolations in Topology Optimization
,”
Arch. Appl. Mech.
0939-1533,
69
, pp.
635
654
.
48.
Bendsøe
,
M. P.
, 1995,
Optimization of Structural Topology, Shape and Material
,
Springer-Verlag
,
New York
.
49.
Sigmund
,
O.
, 2001, “
A 99 Line Topology Optimization Code Written in MATLAB
,”
Struct. Multidiscip. Optim.
1615-147X,
21
, pp.
120
127
.
50.
Ziegler
,
G.
, and
Nichols
,
N. B.
, 1942, “
Optimum Settings for Automatic Controllers
,”
Trans. ASME
0097-6822,
64
, pp.
759
768
.
51.
Åström
,
K. J.
, and
Björn
,
W.
, 1989,
Adaptive Control
,
Addison-Wesley
,
Reading, MA
.
52.
Huiskes
,
R.
,
Ruimerman
,
R.
,
van Lenthe
,
G. H.
, and
Janssen
,
J. D.
, 2000, “
Effects of Mechanical Forces on Maintenance and Adaptation of Form in Trabecular Bone
,”
Nature
0028-0836,
405
, pp.
704
706
.
53.
Cardoso
,
E. L.
, and
Fonseca
,
J. S. O.
, 2003, “
Complexity Control in the Topology Optimization of Continuum Structures
,”
J. Braz. Soc. Mech. Sci. Eng.
,
25
, pp.
293
301
.
54.
Yetis
,
F. A.
, and
Saitou
,
K.
, 2002, “
Decomposition-Based Assembly Synthesis Based on Structural Considerations
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
593
601
.
55.
Cetin
,
O. L.
, and
Saitou
,
K.
, 2004, “
Decomposition-Based Assembly Synthesis for Maximum Structural Strength and Modularity
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
244
253
.
You do not currently have access to this content.