This paper examines mechanisms underlying the phenomenon that, under some conditions, adaptive one-factor-at-a-time experiments outperform fractional factorial experiments in improving the performance of mechanical engineering systems. Five case studies are presented, each based on data from previously published full factorial physical experiments at two levels. Computer simulations of adaptive one-factor-at-a-time and fractional factorial experiments were carried out with varying degrees of pseudo-random error. For each of the five case studies, the average outcomes are plotted for both approaches as a function of the strength of the pseudo-random error. The main effects and interactions of the experimental factors in each system are presented and analyzed to illustrate how the observed simulation results arise. The case studies show that, for certain arrangements of main effects and interactions, adaptive one-factor-at-a-time experiments exploit interactions with high probability despite the fact that these designs lack the resolution to estimate interactions. Generalizing from the case studies, four mechanisms are described and the conditions are stipulated under which these mechanisms act.

1.
Frey
,
D. D.
,
Engelhardt
,
F.
, and
Greitzer
,
E.
, 2003, “
A Role for One Factor at a Time Experimentation in Parameter Design
,”
Res. Eng. Des.
0934-9839,
14
, pp.
65
74
.
2.
Fisher
,
R. A.
, 1926, “
The Arrangement of Field Experiments
,”
J. of the Ministry of Agriculture of Great Britain
,
33
, pp.
503
513
.
3.
Fisher
,
R. A.
, 1935,
The Design of Experiments
,
Oliver and Boyd
, London.
4.
Box
,
G. E. P.
, and
Wilson
,
K. B.
, 1951, “
On the Experimental Attainment of Optimum Conditions
,”
J. R. Stat. Soc. Ser. B. Methodol.
0035-9246,
13
, pp.
1
45
.
5.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology
,
Wiley
, New York.
6.
Jain
,
P.
, and
Agogino
,
A. M.
, 1993, “
Global Optimization Using the Multistart Method
,”
ASME J. Mech. Des.
1050-0472,
115
(
4
), pp.
770
775
.
7.
Taguchi
,
G.
, 1987,
System of Experimental Design
, ASI and Quality Resources,
White Plains
, New York.
8.
Phadke
,
S.
, 1989,
Quality Engineering Using Robust Design
,
Prentice Hall
, Englewood Cliffs, New Jersey.
9.
Wilde
,
D. J.
, 1992, “
Monotonicity Analysis of Taguchi’s Robust Circuit Design Problem
,”
ASME J. Mech. Des.
1050-0472,
114
(
4
) pp.
616
619
.
10.
Otto
,
K. N.
, and
Antonsson
,
E. K.
, 1993, “
Extensions to the Taguchi Method of Product Design
,”
ASME J. Mech. Des.
1050-0472,
115
(
1
), pp.
5
13
.
11.
Yu
,
J.
, and
Ishii
,
K.
, 1998, “
Design for Robustness Based on Manufacturing Variation Patterns
,”
ASME J. Mech. Des.
1050-0472,
120
(
2
), pp.
196
202
.
12.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.
, and
Mistree
,
F.
, 1996, “
Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
1050-0472,
118
(
4
), pp.
478
485
.
13.
Bras
,
B.
, and
Mistree
,
F.
, 1995, “
Compromise Decision Support Problem for axiomatic and robust design
,”
ASME J. Mech. Des.
1050-0472,
117
(
1
),
10
19
.
14.
Gunawan
,
S.
, and
Azarm
,
S.
, 2004, “
Non-gradient Based Parameter Sensitivity Estimation for Single Objective Robust Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
126
(
3
), pp.
395
402
.
15.
Friedman
,
M.
, and
Savage
,
L. J.
, 1947, “
Planning Experiments Seeking Maxima
,” in
Techniques of Statistical Analysis
,
McGraw-Hill
,
New York
, pp.
365
372
.
16.
Cuthbert
,
D.
, 1973, “
One-at-a-Time Plans
,”
J. Am. Stat. Assoc.
0162-1459,
68
, pp.
353
360
.
17.
McDaniel
,
W. R.
, and
Ankenman
,
B. E.
, 2000, “
Comparing Experimental Design Strategies for Quality Improvement with Minimal Changes to Factor Levels
,”
Qual. Reliab. Eng. Int
0748-8017,
16
, pp.
355
362
.
18.
Qu
,
X.
, and
Wu
,
C. F. J.
, 2005, “
One-Factor-at-a-Time Designs of Resolution V
,”
J. Stat. Plan. Infer.
0378-3758,
131
, pp.
407
416
.
19.
Koita
,
R.
, 1994, “
Strategies for Sequential Design of Experiments
,” SM thesis, Massachusetts Institute of Technology, Massachusetts.
20.
Wu
,
C. F. J.
, and
Hamada
,
M.
, 2000,
Experiments: Planning, Design, and Parameter Optimization
,
Wiley
, New York.
21.
Bergman
,
R. S.
,
Cox
,
C. W.
,
Depriest
,
D. J.
, and
Faltin
,
F. W.
, 1990, “
Effect of Process Variations on Incandescent Lamp Performance
,”
J. Illum. Eng. Soc.
0099-4480,
19
(
2
), pp.
132
141
.
22.
Shulka
,
A. K.
,
Stevens
,
P.
,
Hamnett
,
A.
, and
Goodenough
,
J. P.
, 1989, “
A Nafion-Bound Platinized Carbon Electrode for Oxygen Reduction in Solid Polymer Electrolyte Cells
,”
J. Appl. Electrochem.
0021-891X,
19
, pp.
383
386
.
23.
Lloyd
,
F. A.
, 1974, “
Parameters Contributing to Power Loss in Disengaged Wet Clutches
,”
SAE Trans.
0096-736X,
83
, pp.
2498
2507
.
24.
Bogoeva-Gaceva
,
Mader
,
G. E.
, and
Queck
,
H.
, 2000, “
Properties of Glass Fiber Polypropylene Composites Produced from Split-Warp-Knit Textile Preforms
,”
J. of Thermoplastic Composite Mat.
,
13
, pp.
363
377
.
25.
Logothetis
,
N.
, and
Wynn
,
H. P.
, 1994,
Quality Through Design
,
Clarendon Press
, Oxford.
You do not currently have access to this content.