An important aspect of engineering product design selection is the inevitable presence of variability in the selection process. There are mainly two types of variability: variability in the preferences of the decision maker (DM) and variability in attribute levels of the design alternatives. We address both kinds of variability in this paper. We first present a method for selection with preference variability alone. Our method is interactive and iterative and assumes only that the preferences of the DM reflect an implicit value function that is differentiable, quasi-concave and non-decreasing with respect to attributes. The DM states his/her preferences with a range (due to the variability) for marginal rate of substitution (MRS) between attributes at a series of trial designs. The method uses the range of MRS preferences to eliminate “dominated designs” and then to find a set of “potentially optimal designs.” We present a payload design selection example to demonstrate and verify our method. Finally, we extend our method for selection with preference variability to the case where the attribute levels of design alternatives also have variability. We assume that the variability in attribute levels can be quantified with a range of attribute levels.

1.
Li
,
H.
, and
Azarm
,
S.
, 2000, “
Product Design Selection Under Uncertainty and With Competitive Advantage
,”
ASME J. Mech. Des.
1050-0472,
122
(
4
), pp.
411
418
.
2.
Wan
,
J.
, and
Krishnamurty
,
S.
, 2001, “
Learning-Based Preference Modeling in Engineering Design Decision-Making
,”
ASME J. Mech. Des.
1050-0472,
123
(
2
), pp.
191
198
.
3.
Hazelrigg
,
G. A.
, 1998, “
A Framework for Decision-Based Design
,”
ASME J. Mech. Des.
1050-0472,
120
, pp.
653
658
.
4.
Kirkwood
,
C. W.
, and
Sarin
,
R. K.
, 1985, “
Ranking With Partial Information: A Method and an Application
,”
Oper. Res.
0030-364X,
33
(
1
), pp.
38
48
.
5.
Insua
,
D. R.
, and
French
,
S.
, 1991, “
A Framework for Sensitivity Analysis in Discrete Multi-Objective Decision Making
,”
Eur. J. Oper. Res.
0377-2217,
54
, pp.
176
190
.
6.
Neufville
,
R. D.
, 1990,
Applied Systems Analysis: Engineering Planning and Technology Management
,
McGraw–Hill
, New York.
7.
Law
,
W. L.
, 1996, “
Evaluation Imprecision in Engineering Design
,” Ph.D. Dissertation, California Institute of Technology, Pasadena, CA.
8.
Yu
,
P. L.
, 1985,
Multiple Criteria Decision Making: Concepts, Techniques and Extensions
,
Plenum
, New York.
9.
Keeney
,
R. A.
, and
Raiffa
,
H.
, 1976,
Decision With Multiple Objectives Preferences and Value Tradeoffs
,
Wiley
, New York.
10.
Olson
,
D. L.
, 1996,
Decision Aids for Selection Problems
,
Springer-Verlag
, New York.
11.
Pomerol
,
J. C.
, and
Romero
,
S. B.
, 2000,
MultiCriterion Decision in Management: Principles and Practice
,
Kluwer
.
12.
Saaty
,
T.
, 1980,
Analytical Hierarchical Process
,
McGraw–Hill
, New York.
13.
Barzilai
,
J.
, 1997, “
Deriving Weights from Pair Wise Comparison Matrices
,”
J. Oper. Res. Soc.
0160-5682,
48
, pp.
1226
1232
.
14.
See
,
T. K.
, and
Lewis
,
K.
, 2002, “
Multi-Attribute Decision Making Using Hypothetical Equivalents
,”
CD-ROM Proceedings of the ASME IDETC
, Montreal, September 29–October 2.
15.
Reeves
,
G. R.
, and
Macleod
,
K. R.
, 1999, “
Robustness of the Interactive Weighted Tchebycheff Procedure to Inaccurate Preference Information
,”
J. Multi-Criter. Decis. Anal.
1057-9214,
8
(
3
), pp.
128
132
.
16.
Scott
,
M. J.
, 2002, “
Quantifying Certainty in Design Decisions: Examining AHP
,”
CD-ROM Proceedings of the ASME IDETC
, Montreal, September 29–October 2.
17.
White
,
C. C.
III.
,
Sage
,
A. P.
, and
Dozono
,
S.
, 1984, “
A Model for Multiattribute Decisionmaking and Trade-off Weight Determination Under Uncertainty
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
14
(
2
), pp.
223
229
.
18.
Hazen
,
G. B.
, 1986, “
Partial Information, Dominance, and Potential Optimality in Multiattribute Utility Theory
,”
Oper. Res.
0030-364X,
34
(
2
), pp.
296
310
.
19.
Malakooti
,
B.
, 1989, “
Identifying Nondominated Alternatives With Partial Information for Multiple-Objective Discrete and Linear Programming Problems
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
19
(
1
), pp.
95
107
.
20.
Claessens
,
M. N. A. J.
,
Lootsma
,
F. A.
, and
Vogt
,
F. J.
, 1991, “
An Elementary Proof of Paelinck’s Theorem on the Convex Hull of Ranked Criterion Weights
,”
Eur. J. Oper. Res.
0377-2217,
52
, pp.
255
258
.
21.
Anandalingam
,
G.
, and
White
,
C. C.
, III
, 1993, “
A Penalty Function Approach to Alternative Pairwise Comparison in ISMAUT
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
23
(
1
), pp.
330
333
.
22.
Carrizosa
,
E.
,
Conde
,
E.
,
Fernandez
,
F. R.
, and
Puerto
,
J.
, 1995, “
Multi-Criteria Analysis With Partial Information About the Weighting Coefficients
,”
Eur. J. Oper. Res.
0377-2217,
81
, pp.
291
301
.
23.
Athanassopoulos
,
A. D.
, and
Podinovski
,
V. V.
, 1997, “
Dominance and Potential Optimality in Multiple Criteria Decision Analysis With Imprecise Information
”,
J. Oper. Res. Soc.
0160-5682,
48
, pp.
142
150
.
24.
Malakooti
,
B.
, 2000, “
Ranking and Screening Multiple Criteria Alternatives With Partial Information and Use of Ordinal and Cardinal Strength of Preferences
,”
IEEE Trans. Syst. Man Cybern., Part C Appl. Rev.
1094-6977,
30
(
3
), pp.
355
368
.
25.
Jaffray
,
J. Y.
, 1989, “
Some Experimental Findings on Decision Making Under Risk and Their Implications
,”
Eur. J. Oper. Res.
0377-2217,
28
, pp.
301
306
.
26.
Sage
,
A.
, and
White
,
C. C.
, 1984, “
ARIADNE: A Knowledge-Based Interactive System for Planning and Decision Support
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
14
(
1
), pp.
35
47
.
27.
Weber
,
M.
, 1987, “
Decision Making With Incomplete Information
,”
Eur. J. Oper. Res.
0377-2217,
28
, pp.
44
57
.
28.
Moskowitz
,
H.
,
Preckel
,
P. V.
, and
Yang
,
A.
, 1992, “
Multiple-Criteria Robust Interactive Decision Analysis (MCRID) for Optimizing Public Policies
,”
Eur. J. Oper. Res.
0377-2217,
52
, pp.
219
236
.
29.
Park
,
K. S.
, and
Kim
,
S. H.
, 1997, “
Tools for Interactive Multiattribute Decision Making With Incompletely Identified Information
,”
Eur. J. Oper. Res.
0377-2217,
98
, pp.
111
123
.
30.
Eum
,
Y. S.
,
Park
,
K. S.
, and
Kim
,
S. H.
, 2001, “
Establishing Dominance and Potential Optimality in Multi-Criteria Analysis With Imprecise Weight and Value
,”
Comput. Oper. Res.
0305-0548,
28
, pp.
397
409
.
31.
Lee
,
K. S.
,
Park
,
K. S.
,
Eum
,
Y. S.
, and
Park
,
K.
, 2001, “
Extended Methods for Identifying Dominance and Potential Optimality in Multi-Criteria Analysis With Imprecise Information
,”
Eur. J. Oper. Res.
0377-2217,
134
, pp.
557
563
.
32.
Jimenez
,
A.
,
Insua
,
S. R.
, and
Mateos
,
A.
, 2003, “
A Decision Support System for Multi-Attribute Utility Evaluation Based on Imprecise Assignments
,”
Decision Support Sys.
0167-9236,
36
, pp.
65
79
.
33.
Malakooti
,
B.
, 1988, “
A Decision Support System and a Heuristic Interactive Approach for Solving Discrete Multiple Criteria Problems
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
18
(
2
), pp.
273
284
.
34.
Thurston
,
D. L.
, 2001, “
Real and Misconceived Limitations to Decision Based Design With Utility Analysis
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
176
182
.
35.
Maddulapalli
,
K.
,
Azarm
,
S.
, and
Boyars
,
A.
, 2005, “
Interactive Product Design Selection With an Implicit Value Function
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
367
377
(also in CD-ROM Proceedings of the ASME IDETC, Montreal, Canada September 29–October 2, 2002).
36.
Mangasarian
,
O. L.
, 1969,
Nonlinear Programming
,
McGraw–Hill
, New York.
37.
Bazaraa
,
M. S.
,
Sherali
,
H. D.
, and
Shetty
,
C. M.
, 1993,
Nonlinear Programming: Theory and Algorithms
,
Wiley
, New York.
38.
Maddulapalli
,
K.
, and
Azarm
,
S.
, 2004, “
Product Design Selection With Variability in Preferences for an Implicit Value Function
,”
CD-ROM Proceedings of the ASME IDETC
, Salt Lake City, Utah, September 28–October 2.
39.
Gunawan
,
S.
,
Azarm
,
S.
,
Wu
,
J.
, and
Boyars
,
A.
, 2003, “
Quality Assisted Multiobjective Multidisciplinary Genetic Algorithms
,”
AIAA J.
0001-1452,
41
(
9
), pp.
1752
1762
.
40.
Maddulapalli
,
K.
, 2005, “
Product Design Selection With Variability for an Implicit Value Function
,” Ph.D. Dissertation, University of Maryland, College Park, MD.
You do not currently have access to this content.