Early in the engineering design cycle, it is difficult to quantify product reliability or compliance to performance targets due to insufficient data or information to model uncertainties. Probability theory cannot be, therefore, used. Design decisions are usually based on fuzzy information that is vague, imprecise qualitative, linguistic or incomplete. Recently, evidence theory has been proposed to handle uncertainty with limited information as an alternative to probability theory. In this paper, a computationally efficient design optimization method is proposed based on evidence theory, which can handle a mixture of epistemic and random uncertainties. It quickly identifies the vicinity of the optimal point and the active constraints by moving a hyperellipse in the original design space, using a reliability-based design optimization (RBDO) algorithm. Subsequently, a derivative-free optimizer calculates the evidence-based optimum, starting from the close-by RBDO optimum, considering only the identified active constraints. The computational cost is kept low by first moving to the vicinity of the optimum quickly and subsequently using local surrogate models of the active constraints only. Two examples demonstrate the proposed evidence-based design optimization method.

1.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
557
564
.
2.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
, 2004, “
A Single-Loop Method for Reliability-Based Design Optimization
,”
Proceedings of ASME Design Engineering Technical Conferences
, Paper No. DETC2004/DAC-57255.
3.
Wu
,
Y.-T.
,
Shin
,
Y.
,
Sues
,
R.
, and
Cesare
,
M.
, 2001, “
Safety-Factor Based Approach for Probabilistic-Based Design Optimization
,”
42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Seattle, WA
.
4.
Lee
,
J. O.
,
Yang
,
Y. O.
, and
Ruy
,
W. S.
, 2002, “
A Comparative Study on Reliability Index and Target Performance Based Probabilistic Structural Design Optimization
,”
Comput. Struct.
0045-7949,
80
, pp.
257
269
.
5.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2001, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
221
232
.
6.
Oberkampf
,
W.
,
Helton
,
J.
, and
Sentz
,
K.
, 2001, “
Mathematical Representations of Uncertainty
,”
AIAA Non-Deterministic Approaches Forum
, No. AIAA 2001-1645,
Seattle, WA
, April 16–19.
7.
Sentz
,
K.
, and
Ferson
,
S.
, 2002, “
Combination of Evidence in Dempster-Shafer Theory
,” Sandia National Laboratories Report No. SAND2002-0835, April.
8.
Klir
,
G. J.
, and
Yuan
,
B.
, 1995,
Fuzzy Sets and Fuzzy Logic: Theory and Applications
,
Prentice–Hall
,
Englewood Cliffs, NJ
.
9.
Klir
,
G. J.
, and
Filger
,
T. A.
, 1998,
Fuzzy Sets, Uncertainty, and Information
,
Prentice–Hall
,
Englewood Cliffs, NJ
.
10.
Yager
,
R. R.
,
Fedrizzi
,
M.
, and
Kacprzyk
,
J.
, (eds.), 1994,
Advances in the Dempster-Shafer Theory of Evidence
,
Wiley
,
New York
.
11.
Dubois
,
D.
, and
Prade
,
H.
, 1996,
Possibility Theory
,
Plenum
,
New York
.
12.
Moore
,
R. E.
, 1966,
Interval Analysis
,
Prentice–Hall
,
Englewood Cliffs, NJ
.
13.
Zadeh
,
L. A.
, 1965, “
Fuzzy Sets
,”
Info. Control
,
8
, pp.
338
353
.
14.
Muhanna
,
R. L.
, and
Mullen
,
R. L.
, 2001, “
Uncertainty in Mechanics Problems—Interval-Based Approach
,”
J. Eng. Mech.
0733-9399,
127
(
6
),
557
566
.
15.
Mullen
,
R. L.
, and
Muhanna
,
R. L.
, 1999, “
Bounds of Structural Response for All Possible Loadings
,”
J. Struct. Eng.
0733-9445,
125
(
1
), pp.
98
106
.
16.
Penmetsa
,
R. C.
, and
Grandhi
,
R. V.
, 2002, “
Efficient Estimation of Structural Reliability for Problems With Uncertain Intervals
,”
Comput. Struct.
0045-7949,
80
, pp.
1103
1112
.
17.
Du
,
X.
, and
Sudjianto
,
A.
, 2003, “
Reliability-Based Design With a Mixture of Random and Interval Variables
,”
Proceedings of ASME Design Engineering Technical Conferences
, Paper No. DETC2003/DAC-48709.
18.
Rao
,
S. S.
, and
Cao
,
L.
, 2002, “
Optimum Design of Mechanical Systems Involving Interval Parameters
,”
ASME J. Mech. Des.
1050-0472,
124
, pp.
465
472
.
19.
Gu
,
X.
,
Renaud
,
J. E.
, and
Batill
,
S. M.
, 1998, “
An Investigation of Multidisciplinary Design Subject to Uncertainties
,”
Seventh AIAA/USAF/NASA/ISSMO Multidisciplinary Analysis and Optimization Symposium
,
St. Louis
.
20.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2005, “
Reliability Estimation With Insufficient Data Based on Possibility Theory
,”
AIAA J.
0001-1452,
43
(
8
), pp.
1696
1705
.
21.
Choi
,
K. K.
,
Du
,
L.
, and
Youn
,
B. D.
, 2004, “
A New Fuzzy Analysis Method for Possibility-Based Design Optimization
,”
Tenth AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, No. AIAA 2004-4585,
Albany, NY
.
22.
Nikolaidis
,
E.
,
Chen
,
S.
,
Cudney
,
H.
,
Haftka
,
R. T.
, and
Rosca
,
R.
, 2004, “
Comparison of Probability and Possibility for Design Against Catastrophic Failure Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
126
.
23.
Oberkampf
,
W. L.
, and
Helton
,
J. C.
, 2002, “
Investigation of Evidence Theory for Engineering Applications
,”
AIAA Non-Deterministic Approaches Forum
, No. AIAA 2002-1569,
Denver
, April.
24.
Bae
,
H.-R.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
, 2004, “
An Approximation Approach for Uncertainty Quantification Using Evidence Theory
,”
Reliab. Eng. Syst. Saf.
0951-8320,
86
, pp.
215
225
.
25.
Bae
,
H.-R.
,
Grandhi
,
R. V.
, and
Canfield
,
R. A.
, 2004, “
Epistemic Uncertainty Quantification Techniques Including Evidence Theory for Large-Scale Structures
,”
Comput. Struct.
0045-7949,
82
, pp.
1101
1112
.
26.
Agarwal
,
H.
,
Renaud
,
J. E.
,
Preston
,
E. L.
, and
Padmanabhan
,
D.
, 2004, “
Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
, pp.
281
294
.
27.
Ross
,
T. J.
, 1995,
Fuzzy Logic With Engineering Applications
,
McGraw–Hill
,
New York
.
28.
Sentz
,
K.
, and
Ferson
,
S.
, 2002, “
Combination of Evidence in Dempster-Shafer Theory
,” Sandia National Laboratories Report No. SAND2002-0835, April.
29.
Dong
,
W. M.
, and
Shah
,
H. C.
, 1987, “
Vertex Method for Computing Functions of Fuzzy Variables
,”
Fuzzy Sets Syst.
0165-0114,
24
, pp.
65
78
.
30.
Tu
,
J.
, and
Jones
,
D. R.
, 2003, “
Variable Screening in Metamodel Design by Cross-Validated Moving Least Squares Method
,”
Proceedings 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, No. AIAA-2003-1669,
Norfolk, VA
, April 7–10.
31.
Ye
,
K. Q.
,
Li
,
W.
, and
Sudjianto
,
A.
, 2000, “
Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs
,”
J. Stat. Plan. Infer.
0378-3758,
90
, pp.
145
159
.
32.
Jones
,
D. R.
,
Perttunen
,
C. D.
, and
Stuckman
,
B. E.
, 1993, “
Lipschitzian Optimization Without the Lipschitz Constant
,”
J. Optim. Theory Appl.
0022-3239,
73
(
1
), pp.
157
181
.
33.
Lewis
,
K.
, and
Mistree
,
F.
, 1997, “
Collaborative, Sequential and Isolated Decisions in Design
,”
Proceedings of ASME Design Engineering Technical Conferences
, Paper No. DETC1997/DTM-3883.
You do not currently have access to this content.