Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Featherweight material to sustain mountainous loads is an extreme contrast. Still, in reality, the automobile and aerospace industries seek very light materials with high specific strength to survive in global competition. This study offers a timely answer to the problems faced by those sectors. Through the use of a stir-assisted squeeze casting method, the current investigation aims to generate a lightweight magnesium composite that is reinforced with porous low-density pumice particles at weight percentages of 5%, 10%, and 15%. An examination of the density indicates that there is a downward tendency in conjunction with the growing reinforcement. In comparison to the magnesium alloy in its natural state, the Pumice 15 coupon achieves a tensile strength increment of 47%, flexural strength increment of 35%, and a 10-time increment in service cycle at fatigue increase. The micromechanics model is implemented to justify the strengthening process in terms of the adhesion between the filler matrix and the interface shear strength. The property plots that were drafted provide evidence that the suggested material is lightweight while exhibiting a significant amount of strength in tensile, flexural, and fatigue. Post-fracture surface morphology analysis exhibits distinct tensile, flexural, and fatigue patterns.

References

1.
Gupta
,
N.
,
Luong
,
D. D.
, and
Cho
,
K.
,
2012
, “
Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications
,”
Metals
,
2
(
3
), pp.
238
252
.
2.
Brown
,
K. R.
,
Venie
,
M. S.
, and
Woods
,
R. A.
,
1995
,
The Increasing Use of Aluminum in Automotive Applications
,
Springer
,
New York
.
3.
Mordike
,
B.
, and
Ebert
,
T.
,
2001
, “
Magnesium: Properties—Applications—Potential
,”
Mater. Sci. Eng. A
,
302
(
1
), pp.
37
45
.
4.
Dey
,
A.
, and
Pandey
,
K. M.
,
2015
, “
Magnesium Metal Matrix Composites—A Review
,”
Rev. Adv. Mater. Sci.
,
42
(
1
), pp.
58
67
.
5.
Czerwinski
,
F.
,
2011
,
Magnesium Alloys: Design, Processing and Properties
,
BoD–Books on Demand
,
Croatia
.
6.
Chen
,
L.
, and
Yao
,
Y.
,
2014
, “
Processing, Microstructures, and Mechanical Properties of Magnesium Matrix Composites: A Review
,”
Acta Metall. Sinica (Engl. Lett.)
,
27
(
5
), pp.
762
774
.
7.
Cai
,
Y.
,
Taplin
,
D.
,
Tan
,
M. J.
, and
Zhou
,
W.
,
1999
, “
Nucleation Phenomenon in SiC Particulate Reinforced Magnesium Composite
,”
Scr. Mater.
,
41
(
9
), pp.
967
971
.
8.
Carreño-Morelli
,
E.
,
Yang
,
J.
,
Couteau
,
E.
,
Hernadi
,
K.
,
Seo
,
J. W.
,
Bonjour
,
C.
,
Forró
,
L.
, and
Schaller
,
R.
,
2004
, “
Carbon Nanotube/Magnesium Composites
,”
Phys. Status Solidi A
,
201
(
8
), pp.
R53
R55
.
9.
Umeda
,
J.
,
Masashi
,
K.
,
Katsuyoshi
,
K.
,
El-Sayed
,
A.
, and
Hisashi
,
I.
,
2010
, “
Microstructural and Mechanical Properties of Titanium Particulate Reinforced Magnesium Composite Materials
,”
Mater. Chem. Phys.
,
123
(
2–3
), pp.
649
657
.
10.
Shen
,
M.
,
Wang
,
X. Y.
,
Ying
,
T.
,
Wu
,
K.
, and
Song W
,
J.
,
2016
, “
Characteristics and Mechanical Properties of Magnesium Matrix Composites Reinforced With Micron/Submicron/Nano SiC Particles
,”
J. Alloys Compd.
,
686
, pp.
831
840
.
11.
Sankaranarayanan
,
S.
,
Jayalakshmi
,
S.
, and
Gupta
,
M.
,
2011
, “
Effect of Ball Milling the Hybrid Reinforcements on the Microstructure and Mechanical Properties of Mg–(Ti+n-Al2O3) Composites
,”
J. Alloys Compd.
,
509
(
26
), pp.
7229
7237
.
12.
Muhammad
,
W. N. A. W.
,
Sajuri
,
Z.
,
Mutoh
,
Y.
, and
Miyashita
,
Y.
,
2011
, “
Microstructure and Mechanical Properties of Magnesium Composites Prepared by Spark Plasma Sintering Technology
,”
J. Alloys Compd.
,
509
(
20
), pp.
6021
6029
.
13.
Li
,
F.
,
Gan
,
J.
,
Zhang
,
L.
,
Tan
,
H.
,
Li
,
E.
, and
Ii
,
B.
,
2024
, “
Enhancing Impact Resistance of Hybrid Structures Designed With Triply Periodic Minimal Surfaces
,”
Compos. Sci. Technol.
,
245
, p.
110365
.
14.
Lu
,
G.
,
Lu
,
G.
, and
Xiao
,
Z.
,
1999
, “
Mechanical Properties of Porous Materials
,”
J. Porous Mater.
,
6
, pp.
359
368
.
15.
Chaudhary
,
V.
, and
Sharma
,
S.
,
2017
, “
An Overview of Ordered Mesoporous Material SBA-15: Synthesis, Functionalization and Application in Oxidation Reactions
,”
J. Porous Mater.
,
24
, pp.
741
749
.
16.
Adebajo
,
M. O.
,
Frost
,
R. L.
,
Kloprogge
,
J. T.
,
Carmody
,
O.
, and
Kokot
,
S.
,
2003
, “
Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties
,”
J. Porous Mater.
,
10
, pp.
159
170
.
17.
Okabe
,
T.
,
Saito
,
K.
, and
Hokkirigawa
,
K.
,
1996
, “
New Porous Carbon Materials, Woodceramics: Development and Fundamental Properties
,”
J. Porous Mater.
,
2
, pp.
207
213
.
18.
Çoban
,
O.
, and
Yilmaz
,
T.
,
2022
, “
Volcanic Particle Materials in Polymer Composites: A Review
,”
J. Mater. Sci.
,
57
(
36
), pp.
16989
17020
.
19.
Rashad
,
A. M.
,
2019
, “
A Short Manual on Natural Pumice as a Lightweight Aggregate
,”
J. Build. Eng.
,
25
, p.
100802
.
20.
Fetene
,
Y.
, and
Addis
,
T.
,
2020
, “
Adsorptive Removal of Phosphate From Wastewater Using Ethiopian Rift Pumice: Batch Experiment
,”
Air, Soil Water Res.
,
13
, p.
1178622120969658
.
21.
Nguyen
,
Q. B.
,
Nai
,
M. L. S.
,
Nguyen
,
A. S.
,
Seetharaman
,
S.
,
Leong
,
E. W. W.
, and
Gupta
,
M.
,
2016
, “
Synthesis and Properties of Light Weight Magnesium–Cenosphere Composite
,”
Mater. Sci. Technol.
,
32
(
9
), pp.
923
929
.
22.
Hassan
,
S.
, and
Gupta
,
M.
,
2005
, “
Enhancing Physical and Mechanical Properties of Mg Using Nanosized Al2O3 Particulates as Reinforcement
,”
Metall. Mater. Trans. A
,
36
, pp.
2253
2258
.
23.
Olszówka-Myalska
,
A.
, and
Myalski
,
J.
,
2015
, “
Magnesium Alloy AZ31-Short Carbon Fiber Composite Obtained by Pressure die Casting
,”
Solid State Phenom.
,
229
, pp.
115
122
.
24.
Katona
,
B.
,
Szebényi
,
G.
, and
Orbulov
,
I. N.
,
2017
, “
Fatigue Properties of Ceramic Hollow Sphere Filled Aluminium Matrix Syntactic Foams
,”
Mater. Sci. Eng. A
,
679
, pp.
350
357
.
25.
Dieringa
,
H.
,
2011
, “
Properties of Magnesium Alloys Reinforced With Nanoparticles and Carbon Nanotubes: A Review
,”
J. Mater. Sci.
,
46
(
2
), pp.
289
306
.
26.
Rashad
,
A. M.
,
2021
, “
An Overview of Pumice Stone as a Cementitious Material–The Best Manual for Civil Engineer
,”
Silicon
,
13
(
2
), pp.
551
572
.
27.
Kösedağ
,
E.
,
2023
, “
Investigation of the Effect of Filling Ratio on Mechanical Properties of Pumice Filled Epoxy-Based Composites
,”
Gazi Univ. J. Sci. Part C: Des. Technol.
,
11
(
2
), pp.
431
438
.
28.
Mathimurugan
,
N.
,
Venkatesh
,
C.
,
Alarifi
,
I. M.
,
Najim
,
H. M.
, and
Kiran
,
S.
,
2022
, “
Room and High Temperature Tensile Responses of Tib2-Graphene Al 7075 Hybrid Composite Processed Through Squeeze Casting
,”
Nanomaterials
,
12
(
18
), p.
3124
.
29.
Nan
,
C.-W.
, and
Clarke
,
D.
,
1996
, “
The Influence of Particle Size and Particle Fracture on the Elastic/Plastic Deformation of Metal Matrix Composites
,”
Acta Mater.
,
44
(
9
), pp.
3801
3811
.
30.
Zhang
,
Z.
, and
Chen
,
D.
,
2008
, “
Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites
,”
Mater. Sci. Eng. A
,
483
, pp.
148
152
.
31.
Guo
,
Z.
,
Sun
,
T.
,
Cao
,
J.
,
Liu
,
X.
,
Li
,
X.
,
Xue
,
J.
,
Li
,
X.
,
Liang
,
Y.
, and
Lin
,
J.
,
2022
, “
Microstructure and Mechanical Properties of Al Matrix Composite Reinforced With Micro/Nano-Sized Yttrium Oxyfluoride
,”
Mater. Sci. Eng. A
,
854
(
7
), p.
143820
.
32.
Pan
,
S.
,
Chi
,
Y.
,
Yuan
,
J.
,
Zheng
,
T.
, and
Li
,
X.
,
2022
, “Effect of TiC Nanoparticles on Solidification Processing and Properties of Al–1.4Mg–0.8Si Alloy,”
Light Metals 2022
,
D.
Eskin
, ed.,
Springer
,
New York
, pp.
127
134
.
33.
Xiuqing
,
Z.
,
Haowei
,
W.
,
Lihua
,
L.
,
Xinying
,
T.
, and
Naiheng
,
M.
,
2005
, “
The Mechanical Properties of Magnesium Matrix Composites Reinforced With (TiB2+TiC) Ceramic Particulates
,”
Mater. Lett.
,
59
(
17
), pp.
2105
2109
.
34.
Gupta
,
M.
,
Lai
,
M.
, and
Saravanaranganathan
,
D.
,
2000
, “
Synthesis, Microstructure and Properties Characterization of Disintegrated Melt Deposited Mg/SiC Composites
,”
J. Mater. Sci.
,
35
, pp.
2155
2165
.
35.
Chi
,
Y.
,
Pan
,
S.
,
Liese
,
M.
,
Liu
,
J.
,
Murali
,
N.
,
Soemardy
,
E.
, and
Li
,
X.
,
2023
, “
Wire-Arc Directed Energy Deposition of Aluminum Alloy 7075 With Dispersed Nanoparticles
,”
ASME J. Manuf. Sci. Eng.
,
145
(
3
), p.
031010
.
36.
Li
,
J.
,
Wany
,
F.
,
Weng
,
W.
,
Zhang
,
Y.
,
Wang
,
M.
, and
Wang
,
H.
,
2012
, “
Characteristic and Mechanical Properties of Magnesium Matrix Composites Reinforced With Mg2B2O5w and B4Cp
,”
Mater. Des.
,
37
, pp.
533
536
.
37.
Vaghari
,
M.
,
Khayati
,
G. R.
, and
Jenabali Jahromi
,
S.
,
2019
, “
Studying on the Fatigue Behavior of Al-Al2O3 Metal Matrix Nano Composites Processed Through Powder Metallurgy
,”
J. Ultrafine Grained Nanostruct. Mater.
,
52
(
2
), pp.
210
217
.
38.
Abd-Elaziem
,
W.
,
Khedr
,
M.
,
Elsheikh
,
H. A.
,
Liu
,
J.
,
Zeng
,
Y.
,
Sebae
,
A. T.
,
Abd El-Baky
,
A. M.
,
Darwish
,
A. D.
,
Daoush
,
M. W.
, and
Li
,
X.
,
2023
, “
Influence of Nanoparticles Addition on the Fatigue Failure Behavior of Metal Matrix Composites: Comprehensive Review
,”
Eng. Fail. Anal.
,
155
(
4
), p.
107751
.
39.
Zare
,
Y.
,
2015
, “
Effects of Interphase on Tensile Strength of Polymer/CNT Nanocomposites by Kelly–Tyson Theory
,”
Mech. Mater.
,
85
, pp.
1
6
.
40.
Pukanszky
,
B.
,
1990
, “
Influence of Interface Interaction on the Ultimate Tensile Properties of Polymer Composites
,”
Composites
,
21
(
3
), pp.
255
262
.
41.
Kelly
,
A.
, and
Davies
,
G.
,
1965
, “
The Principles of the Fibre Reinforcement of Metals
,”
Metall. Rev.
,
10
(
1
), pp.
1
77
.
42.
Bahador
,
A.
,
Umeda
,
J.
,
Hamzah
,
E.
,
Yusof
,
F.
,
Li
,
X.
, and
Kondoh
,
K.
,
2020
, “
Synergistic Strengthening Mechanisms of Copper Matrix Composites With TiO2 Nanoparticles
,”
Mater. Sci. Eng. A
,
772
, p.
138797
.
43.
Zhang
,
X.
,
Yu
,
Y.
,
Liu
,
B.
, and
Ren
,
J.
,
2019
, “
Mechanical Properties and Tensile Fracture Mechanism Investigation of Al/Cu/Ti/Cu/Al Laminated Composites Fabricated by Rolling
,”
J. Alloys Compd.
,
805
, pp.
338
345
.
44.
Van Mier
,
J. G.
,
van Vliet
,
M. R.
, and
Wang
,
T. K.
,
2002
, “
Fracture Mechanisms in Particle Composites: Statistical Aspects in Lattice Type Analysis
,”
Mech. Mater.
,
34
(
11
), pp.
705
724
.
45.
Myriounis
,
D.
,
Matikas
,
T.
, and
Hasan
,
S.
,
2012
, “
Fatigue Behaviour of SiC Particulate-Reinforced A359 Aluminium Matrix Composites
,”
Strain
,
48
(
4
), pp.
333
341
.
46.
Zhang
,
D.
,
Shi
,
D.
,
Wang
,
F.
,
Qian
,
D.
,
Zhou
,
Y.
,
Fu
,
J.
,
Chen
,
M.
,
Qiu
,
D.
, and
Jiang
,
S.
,
2023
, “
Electromagnetic Shocking Induced Fatigue Improvement via Tailoring the α-Grain Boundary in Metastable β Titanium Alloy Bolts
,”
J. Alloys Compd.
,
966
, p.
171536
.
47.
Kaynak
,
C.
, and
Boylu
,
S.
,
2006
, “
Effects of SiC Particulates on the Fatigue Behaviour of an Al-Alloy Matrix Composite
,”
Mater. Des.
,
27
(
9
), pp.
776
782
.
48.
Hassan
,
S.
, and
Gupta
,
M.
,
2007
, “
Development of Nano-Y2O3 Containing Magnesium Nanocomposites Using Solidification Processing
,”
J. Alloys Compd.
,
429
(
1–2
), pp.
176
183
.
49.
Hassan
,
S.
, and
Gupta
,
M.
,
2005
, “
Creation of High Performance Mg Based Composite Containing Nano-Size Al2O3 Particulates as Reinforcement
,”
J. Metastable Nanocryst. Mater.
,
23
, pp.
151
154
.
50.
Hassan
,
S.
, and
Gupta
,
M.
,
2008
, “
Effect of Submicron Size Al2O3 Particulates on Microstructural and Tensile Properties of Elemental Mg
,”
J. Alloys Compd.
,
457
(
1–2
), pp.
244
250
.
51.
Hassan
,
S.
, and
Gupta
,
M.
,
2005
, “
Development of High Performance Magnesium Nano-Composites Using Nano-Al2O3 as Reinforcement
,”
Mater. Sci. Eng. A
,
392
(
1–2
), pp.
163
168
.
52.
Hassan
,
S.
, and
Gupta
,
M.
,
2006
, “
Effect of Length Scale of Al2O3 Particulates on Microstructural and Tensile Properties of Elemental Mg
,”
Mater. Sci. Eng. A
,
425
(
1–2
), pp.
22
27
.
53.
Wong
,
W. L. E.
,
Karthik
,
S.
, and
Gupta
,
M.
,
2005
, “
Development of High Performance Mg–Al2O3 Composites Containing Al2O3 in Submicron Length Scale Using Microwave Assisted Rapid Sintering
,”
Mater. Sci. Technol.
,
21
(
9
), pp.
1063
1070
.
54.
Nguyen
,
Q.
, and
Gupta
,
M.
,
2008
, “
Enhancing Compressive Response of AZ31B Magnesium Alloy Using Alumina Nanoparticulates
,”
Compos. Sci. Technol.
,
68
(
10–11
), pp.
2185
2192
.
55.
Tun
,
K. S.
, and
Gupta
,
M.
,
2007
, “
Improving Mechanical Properties of Magnesium Using Nano-Yttria Reinforcement and Microwave Assisted Powder Metallurgy Method
,”
Compos. Sci. Technol.
,
67
(
13
), pp.
2657
2664
.
56.
Goh
,
C.
,
Wei
,
J.
,
Lee
,
L. C.
, and
Gupta
,
M.
,
2006
, “
Simultaneous Enhancement in Strength and Ductility by Reinforcing Magnesium With Carbon Nanotubes
,”
Mater. Sci. Eng. A
,
423
(
1–2
), pp.
153
156
.
57.
Goh
,
C.
,
Wei
,
J.
,
Lee
,
L. C.
, and
Gupta
,
M.
,
2006
, “
Effect of Fabrication Techniques on the Properties of Carbon Nanotubes Reinforced Magnesium
,”
Solid State Phenom.
,
111
, pp.
179
182
.
58.
Shimizu
,
Y.
,
Miki
,
S.
,
Soga
,
T.
,
Itoh
,
I.
,
Todoroki
,
H.
,
Hosono
,
T.
,
Sakaki
,
K.
, et al
,
2008
, “
Multi-Walled Carbon Nanotube-Reinforced Magnesium Alloy Composites
,”
Scr. Mater.
,
58
(
4
), pp.
267
270
.
59.
Daoud
,
A.
,
2009
, “
Effect of Fly Ash Addition on the Structure and Compressive Properties of 4032–Fly Ash Particle Composite Foams
,”
J. Alloys Compd.
,
487
(
1–2
), pp.
618
625
.
60.
Xue
,
X.
, and
Zhao
,
Y.
,
2011
, “
Ti Matrix Syntactic Foam Fabricated by Powder Metallurgy: Particle Breakage and Elastic Modulus
,”
Jom
,
63
(
2
), pp.
43
47
.
61.
Daoud
,
A.
,
El-khair
,
M. T. A.
,
Abdel-Aziz
,
M.
, and
Rohatgi
,
P.
,
2007
, “
Fabrication, Microstructure and Compressive Behavior of ZC63 Mg–Microballoon Foam Composites
,”
Compos. Sci. Technol.
,
67
(
9
), pp.
1842
1853
.
62.
Rohatgi
,
P.
,
Kim
,
J. K.
,
Gupta
,
N.
,
Alaraj
,
S.
, and
Daoud
,
A.
,
2006
, “
Compressive Characteristics of A356/Fly Ash Cenosphere Composites Synthesized by Pressure Infiltration Technique
,”
Composites, Part A
,
37
(
3
), pp.
430
437
.
63.
Surappa
,
M.
,
2008
, “
Synthesis of Fly Ash Particle Reinforced A356 Al Composites and Their Characterization
,”
Mater. Sci. Eng. A
,
480
(
1–2
), pp.
117
124
.
You do not currently have access to this content.