Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The design complexities with advancements in technology limit the operational efficiency and conventional manufacturing ability of Nickel-based superalloy 718 (IN718). Additive manufacturing (AM) can overcome these drawbacks by producing near-net shape components; however, a thorough understanding of mechanical behavior at elevated temperatures and different loading conditions (i.e., tension and compression) is required before its actual use. In this work, process-induced history effects on the mechanical behavior in an additively manufactured IN718 alloy were investigated. In particular, two different heat treatment routes were chosen to tailor the microstructure by having the specific dissolution of precipitated phases. Quasi-static (QS) and creep experiments were performed in both as-build and postprocessed conditions. The build directions and the nature of the phases present were observed to be the governing factors. Results showed that the horizontal orientation had higher yield strength compared to the vertical orientation, irrespective of loading condition. Compression and tensile creep experiments indicated that the creep life was dependent on the orientation of δ/Laves phases. Furthermore, a tension-compression asymmetry was observed in both QS and creep testing. Overall, postprocessing proved to be advantageous in improving mechanical behavior and reducing the anisotropy related to the build direction.

References

1.
Jewett
,
R. P.
, and
Halchak
,
J. A.
,
1991
, “The Use of Alloy 718 in the Space Shuttle Main Engine,”
Superalloys 718, 625 and Various Derivatives
,
E. A.
Loria
, ed.,
TMS
,
PA
, pp.
749
760
.
2.
Paulonis
,
D. F.
, and
Schirra
,
J. J.
,
2001
, “Alloy 718 at Pratt & Whitney: Historical Perspective and Future Challenges,”
Superalloys 718, 625, 706 and Various Derivatives
,
E. A.
Loria
, ed.,
TMS
,
PA
, pp.
13
23
.
3.
Loria
,
E. A.
,
1992
, “
Recent Developments in the Progress of Superalloy 718
,”
JOM
,
44
(
6
), pp.
33
36
.
4.
Oblak
,
J. M.
,
Paulonis
,
D. F.
, and
Duvall
,
D. S.
,
1974
, “
Coherency Strengthening in Ni Base Alloys Hardened by D022 Precipitates
,”
Metall. Trans.
,
5
(
1
), pp.
143
153
.
5.
Brandt
,
G.
,
Gerendas
,
A.
, and
Mikus
,
M.
,
1990
, “
Wear Mechanisms of Ceramic Cutting Tools When Machining Ferrous and Non-Ferrous Alloys
,”
J. Eur. Ceram. Soc.
,
6
(
5
), pp.
273
290
.
6.
Narutaki
,
N.
,
Yamane
,
Y.
,
Hayashi
,
K.
,
Kitagawa
,
T.
, and
Uehara
,
K.
,
1993
, “
High-Speed Machining of Inconel 718 With Ceramic Tools
,”
CIRP Ann.
,
42
(
1
), pp.
103
106
.
7.
Osakada
,
K.
, and
Shiomi
,
M.
,
2006
, “
Flexible Manufacturing of Metallic Products by Selective Laser Melting of Powder
,”
Int. J. Mach. Tools Manuf.
,
46
(
11
), pp.
1188
1193
.
8.
Beura
,
V. K.
,
Sharma
,
A.
,
Karanth
,
Y.
,
Sharma
,
S.
, and
Solanki
,
K.
,
2023
, “
Corrosion Behavior of 7050 and 7075 Aluminum Alloys Processed by Reactive Additive Manufacturing
,”
Electrochim. Acta
,
470
(
1
), p.
143357
.
9.
Herzog
,
D.
,
Seyda
,
V.
,
Wycisk
,
E.
, and
Emmelmann
,
C.
,
2016
, “
Additive Manufacturing of Metals
,”
Acta Mater.
,
117
(
1
), pp.
371
392
.
10.
Leuders
,
S.
,
Thöne
,
M.
,
Riemer
,
A.
,
Niendorf
,
T.
,
Tröster
,
T.
,
Richard
,
H. A.
, and
Maier
,
H. J.
,
2013
, “
On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance
,”
Int. J. Fatigue
,
48
, pp.
300
307
.
11.
Gokuldoss
,
P. K.
,
Kolla
,
S.
, and
Eckert
,
J.
,
2017
, “
Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines
,”
Materials
,
10
(
6
), p.
672
.
12.
Popovich
,
V. A.
,
Borisov
,
E. V.
,
Popovich
,
A. A.
,
Sufiiarov
,
V. S.
,
Masaylo
,
D. V.
, and
Alzina
,
L.
,
2017
, “
Functionally Graded Inconel 718 Processed by Additive Manufacturing: Crystallographic Texture, Anisotropy of Microstructure and Mechanical Properties
,”
Mater. Des.
,
114
, pp.
441
449
.
13.
Wan
,
H. Y.
,
Zhou
,
Z. J.
,
Li
,
C. P.
,
Chen
,
G. F.
, and
Zhang
,
G. P.
,
2019
, “
Effect of Scanning Strategy on Mechanical Properties of Selective Laser Melted Inconel 718
,”
Mater. Sci. Eng. A
,
753
, pp.
42
48
.
14.
Chlebus
,
E.
,
Gruber
,
K.
,
Kuźnicka
,
B.
,
Kurzac
,
J.
, and
Kurzynowski
,
T.
,
2015
, “
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718 Processed by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
639
, pp.
647
655
.
15.
Deng
,
D.
,
Peng
,
R. L.
,
Brodin
,
H.
, and
Moverare
,
J.
,
2018
, “
Microstructure and Mechanical Properties of Inconel 718 Produced by Selective Laser Melting: Sample Orientation Dependence and Effects of Post Heat Treatments
,”
Mater. Sci. Eng. A
,
713
, pp.
294
306
.
16.
Kuo
,
Y.-L.
,
Horikawa
,
S.
, and
Kakehi
,
K.
,
2017
, “
The Effect of Interdendritic δ Phase on the Mechanical Properties of Alloy 718 Built Up by Additive Manufacturing
,”
Mater. Des.
,
116
, pp.
411
418
.
17.
Liu
,
S. Y.
,
Li
,
H. Q.
,
Qin
,
C. X.
,
Zong
,
R.
, and
Fang
,
X. Y.
,
2020
, “
The Effect of Energy Density on Texture and Mechanical Anisotropy in Selective Laser Melted Inconel 718
,”
Mater. Des.
,
191
, p.
108642
.
18.
Bean
,
G. E.
,
McLouth
,
T. D.
,
Witkin
,
D. B.
,
Sitzman
,
S. D.
,
Adams
,
P. M.
, and
Zaldivar
,
R. J.
,
2019
, “
Build Orientation Effects on Texture and Mechanical Properties of Selective Laser Melting Inconel 718
,”
J. Mater. Eng. Perform.
,
28
(
4
), pp.
1942
1949
.
19.
Trosch
,
T.
,
Strößner
,
J.
,
Völkl
,
R.
, and
Glatzel
,
U.
,
2016
, “
Microstructure and Mechanical Properties of Selective Laser Melted Inconel 718 Compared to Forging and Casting
,”
Mater. Lett.
,
164
, pp.
428
431
.
20.
Pröbstle
,
M.
,
Neumeier
,
S.
,
Hopfenmüller
,
J.
,
Freund
,
L. P.
,
Niendorf
,
T.
,
Schwarze
,
D.
, and
Göken
,
M.
,
2016
, “
Superior Creep Strength of a Nickel-Based Superalloy Produced by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
674
, pp.
299
307
.
21.
Shi
,
J. J.
,
Li
,
X.
,
Zhang
,
Z. X.
,
Cao
,
G. H.
,
Russell
,
A. M.
,
Zhou
,
Z. J.
,
Li
,
C. P.
, and
Chen
,
G. F.
,
2019
, “
Study on the Microstructure and Creep Behavior of Inconel 718 Superalloy Fabricated by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
765
, p.
138282
.
22.
Kuo
,
Y.-L.
,
Nagahari
,
T.
, and
Kakehi
,
K.
,
2018
, “
The Effect of Post-Processes on the Microstructure and Creep Properties of Alloy718 Built Up by Selective Laser Melting
,”
Materials
,
11
(
6
), p.
996
.
23.
Kuo
,
Y.-L.
,
Horikawa
,
S.
, and
Kakehi
,
K.
,
2017
, “
Effects of Build Direction and Heat Treatment on Creep Properties of Ni-Base Superalloy Built Up by Additive Manufacturing
,”
Scr. Mater.
,
129
, pp.
74
78
.
24.
Rajagopalan
,
M.
,
Darling
,
K. A.
,
Kale
,
C.
,
Turnage
,
S. A.
,
Koju
,
R. K.
,
Hornbuckle
,
B. C.
,
Mishin
,
Y.
, and
Solanki
,
K. N.
,
2019
, “
Nanotechnology Enabled Design of a Structural Material With Extreme Strength as Well as Thermal and Electrical Properties
,”
Mater. Today
,
31
, pp.
10
20
.
25.
Turnage
,
S. A.
,
Rajagopalan
,
M.
,
Darling
,
K. A.
,
Garg
,
P.
,
Kale
,
C.
,
Bazehhour
,
B. G.
,
Adlakha
,
I.
, et al
,
2018
, “
Anomalous Mechanical Behavior of Nanocrystalline Binary Alloys Under Extreme Conditions
,”
Nat. Commun.
,
9
(
1
), p.
2699
.
26.
Kale
,
C.
,
Turnage
,
S.
,
Garg
,
P.
,
Adlakha
,
I.
,
Srinivasan
,
S.
,
Hornbuckle
,
B. C.
,
Darling
,
K.
, and
Solanki
,
K. N.
,
2019
, “
Thermo-Mechanical Strengthening Mechanisms in a Stable Nanocrystalline Binary Alloy—A Combined Experimental and Modeling Study
,”
Mater. Des.
,
163
, p.
107551
.
27.
Kale
,
C.
,
Srinivasan
,
S.
,
Hornbuckle
,
B. C.
,
Koju
,
R. K.
,
Darling
,
K.
,
Mishin
,
Y.
, and
Solanki
,
K. N.
,
2020
, “
An Experimental and Modeling Investigation of Tensile Creep Resistance of a Stable Nanocrystalline Alloy
,”
Acta Mater.
,
199
, pp.
141
154
.
28.
Darling
,
K. A.
,
Rajagopalan
,
M.
,
Komarasamy
,
M.
,
Bhatia
,
M. A.
,
Hornbuckle
,
B. C.
,
Mishra
,
R. S.
, and
Solanki
,
K. N.
,
2016
, “
Extreme Creep Resistance in a Microstructurally Stable Nanocrystalline Alloy
,”
Nature
,
537
(
7620
), pp.
378
381
.
29.
Jiang
,
R.
,
Mostafaei
,
A.
,
Pauza
,
J.
,
Kantzos
,
C.
, and
Rollett
,
A. D.
,
2019
, “
Varied Heat Treatments and Properties of Laser Powder Bed Printed Inconel 718
,”
Mater. Sci. Eng. A
,
755
, pp.
170
180
.
30.
Fayed
,
E. M.
,
Saadati
,
M.
,
Shahriari
,
D.
,
Brailovski
,
V.
,
Jahazi
,
M.
, and
Medraj
,
M.
,
2021
, “
Effect of Homogenization and Solution Treatments Time on the Elevated-Temperature Mechanical Behavior of Inconel 718 Fabricated by Laser Powder Bed Fusion
,”
Sci. Rep.
,
11
(
1
), p.
2020
.
31.
Ghorbanpour
,
S.
,
Alam
,
M. E.
,
Ferreri
,
N. C.
,
Kumar
,
A.
,
McWilliams
,
B. A.
,
Vogel
,
S. C.
,
Bicknell
,
J.
,
Beyerlein
,
I. J.
, and
Knezevic
,
M.
,
2020
, “
Experimental Characterization and Crystal Plasticity Modeling of Anisotropy, Tension-Compression Asymmetry, and Texture Evolution of Additively Manufactured Inconel 718 at Room and Elevated Temperatures
,”
Int. J. Plast.
,
125
, pp.
63
79
.
32.
Zhang
,
D.
,
Niu
,
W.
,
Cao
,
X.
, and
Liu
,
Z.
,
2015
, “
Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Selective Laser Melting Manufactured Inconel 718 Superalloy
,”
Mater. Sci. Eng. A
,
644
, pp.
32
40
.
33.
Appa Rao
,
G.
,
Srinivas
,
M.
, and
Sarma
,
D. S.
,
2004
, “
Effect of Thermomechanical Working on the Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy Inconel 718
,”
Mater. Sci. Eng. A
,
383
(
2
), pp.
201
212
.
34.
Raj
,
R.
, and
Ashby
,
M.
,
1971
, “
On Grain Boundary Sliding and Diffusional Creep
,”
Metall. Trans.
,
2
(
4
), pp.
1113
1127
.
35.
Wang
,
Z.
,
Guan
,
K.
,
Gao
,
M.
,
Li
,
X.
,
Chen
,
X.
, and
Zeng
,
X.
,
2012
, “
The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting
,”
J. Alloys Compd.
,
513
, pp.
518
523
.
36.
Shifeng
,
W.
,
Shuai
,
L.
,
Qingsong
,
W.
,
Yan
,
C.
,
Sheng
,
Z.
, and
Yusheng
,
S.
,
2014
, “
Effect of Molten Pool Boundaries on the Mechanical Properties of Selective Laser Melting Parts
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2660
2667
.
37.
Huang
,
W.
,
Yang
,
J.
,
Yang
,
H.
,
Jing
,
G.
,
Wang
,
Z.
, and
Zeng
,
X.
,
2019
, “
Heat Treatment of Inconel 718 Produced by Selective Laser Melting: Microstructure and Mechanical Properties
,”
Mater. Sci. Eng. A
,
750
, pp.
98
107
.
38.
Wang
,
X.
, and
Chou
,
K.
,
2017
, “
Effects of Thermal Cycles on the Microstructure Evolution of Inconel 718 During Selective Laser Melting Process
,”
Addit. Manuf.
,
18
, pp.
1
14
.
39.
Qi
,
H.
,
Azer
,
M.
, and
Ritter
,
A.
,
2009
, “
Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718
,”
Metall. Mater. Trans. A
,
40
(
10
), pp.
2410
2422
.
40.
Tucho
,
W. M.
,
Cuvillier
,
P.
,
Sjolyst-Kverneland
,
A.
, and
Hansen
,
V.
,
2017
, “
Microstructure and Hardness Studies of Inconel 718 Manufactured by Selective Laser Melting Before and After Solution Heat Treatment
,”
Mater. Sci. Eng. A
,
689
, pp.
220
232
.
41.
Hall
,
E. O.
,
1951
, “
The Deformation and Ageing of Mild Steel: III Discussion of Results
,”
Proc. Phys. Soc. Sect. B
,
64
(
9
), pp.
747
753
.
42.
Petch
,
N.
,
1953
, “
The Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst.
,
174
(
5–6
), pp.
25
28
.
43.
Gao
,
Y.
,
Zhang
,
D.
,
Cao
,
M.
,
Chen
,
R.
,
Feng
,
Z.
,
Poprawe
,
R.
,
Schleifenbaum
,
J. H.
, and
Ziegler
,
S.
,
2019
, “
Effect of δ Phase on High Temperature Mechanical Performances of Inconel 718 Fabricated With SLM Process
,”
Mater. Sci. Eng. A
,
767
, p.
138327
.
44.
Azadian
,
S.
,
Wei
,
L.-Y.
, and
Warren
,
R.
,
2004
, “
Delta Phase Precipitation in Inconel 718
,”
Mater. Charact.
,
53
(
1
), pp.
7
16
.
45.
Wright
,
S. I.
,
Nowell
,
M. M.
, and
Field
,
D. P.
,
2011
, “
A Review of Strain Analysis Using Electron Backscatter Diffraction
,”
Microsc. Microanal.
,
17
(
3
), pp.
316
329
.
46.
Ni
,
M.
,
Chen
,
C.
,
Wang
,
X.
,
Wang
,
P.
,
Li
,
R.
,
Zhang
,
X.
, and
Zhou
,
K.
,
2017
, “
Anisotropic Tensile Behavior of In Situ Precipitation Strengthened Inconel 718 Fabricated by Additive Manufacturing
,”
Mater. Sci. Eng. A
,
701
, pp.
344
351
.
47.
Sui
,
S.
,
Tan
,
H.
,
Chen
,
J.
,
Zhong
,
C.
,
Li
,
Z.
,
Fan
,
W.
,
Gasser
,
A.
, and
Huang
,
W.
,
2019
, “
The Influence of Laves Phases on the Room Temperature Tensile Properties of Inconel 718 Fabricated by Powder Feeding Laser Additive Manufacturing
,”
Acta Mater.
,
164
, pp.
413
427
.
48.
Shassere
,
B.
,
Greeley
,
D.
,
Okello
,
A.
,
Kirka
,
M.
,
Nandwana
,
P.
, and
Dehoff
,
R.
,
2018
, “
Correlation of Microstructure to Creep Response of Hot Isostatically Pressed and Aged Electron Beam Melted Inconel 718
,”
Metall. Mater. Trans. A
,
49
(
10
), pp.
5107
5117
.
You do not currently have access to this content.