Abstract

In this paper, metal 3D printing technology was used to investigate the effects of build orientation angles and direction on the mechanical characteristics of 316L stainless steel produced by the Bound Metal Deposition (BMD) process. Several orientation angles (0 deg, 45 deg, and 90 deg) of the test specimens were made for both horizontal and vertical build directions. The tensile testing apparatus was used on metal 3D-printed samples to determine their mechanical characteristics, such as Young's modulus, elongation at break, and ultimate strength. Brinell hardness tester was also used to compare the hardness of 3D-printed samples to the original native material. In addition, the porosity and microstructure of the printed samples were analyzed in this study. The findings of this investigation revealed how, in comparison to the original material, the mechanical properties of the metal 3D-printed material rely on the raster orientation and build type. The experimental results demonstrate that the 3D-printed parts using the BMD process have comparable ultimate tensile strength and elongation at break compared to the original material for 0 deg orientation and horizontal build direction. The elongation at break was found to depend strongly on the build direction for 45 deg and 90 deg printing orientation. Further, Young's modulus was found to be much lower than the original material using the BMD process.

References

1.
Kong
,
L.
,
Ambrosi
,
A.
,
Nasir
,
Z.
,
Guan
,
J.
, and
Pumera
,
M.
,
2019
, “
Self-Propelled 3D-Printed Aircraft Carrier of Light-Powered Smart Micromachines for Large-Volume Nitroaromatic Explosives Removal
,”
Adv. Funct. Mater.
,
29
(
39
), pp.
1
9
.
2.
Bao
,
X.
,
Zhu
,
L.
,
Huang
,
X.
,
Tang
,
D.
,
He
,
D.
,
Shi
,
J.
, and
Xu
,
G.
,
2017
, “
3D Biomimetic Artificial Bone Scaffolds With Dual-Cytokines Spatiotemporal Delivery for Large Weight-Bearing Bone Defect Repair
,”
Sci. Rep.
,
7
(
1
), pp.
1
13
.
3.
Khosravani
,
R.
, and
Reinicke
,
T.
,
2020
, “
3D-Printed Sensors: Current Progress and Future Challenges
,”
Sens. Actuators, A
,
305
, p.
111916
.
4.
Zega
,
V.
,
Credi
,
C.
,
Bernasconi
,
R.
,
Langfelder
,
G.
,
Maganin
,
L.
,
Levi
,
M.
, and
Corigliano
,
A.
,
2018
, “
3-D-Printed z-Axis Accelerometers With Differential Capacitive Sensing
,”
IEEE Sens. J.
,
18
(
1
), pp.
53
60
.
5.
Ma
,
L.
,
Zhou
,
Y.
,
Zhu
,
Y.
,
Lin
,
Z.
,
Chen
,
L.
,
Zhang
,
Y.
,
Xia
,
H.
, and
Mao
,
C.
,
2017
, “
3D Printed Personalized Titanium Plates Improve Clinical Outcome in Microwave Ablation of Bone Tumors Around the Knee
,”
Sci. Rep.
,
7
(
1
), pp.
1
10
.
6.
Nasiri
,
S.
, and
Khosravani
,
R.
,
2020
, “
Progress and Challenges in Fabrication of Wearable Sensors for Health Monitoring
,”
Sens. Actuators, A
,
312
, p.
112105
.
7.
Hosseini
,
E.
, and
Popovich
,
V. A.
,
2019
, “
A Review of Mechanical Properties of Additively Manufactured Inconel 718
,”
Addit. Manuf.
,
30
, p.
100877
.
8.
Eltagga
,
A.
,
Cloutier
,
J.
, and
Deiab
,
I.
,
2021
, “
Thermal Post-Processing of 4140 Alloy Steel Parts Fabricated by Selective Laser Melting (SLM)
,”
Proc. CSME
,
1
, pp.
1
5
.
9.
Khosravani
,
M.
,
Berto
,
F.
,
Ayatollahi
,
M.
, and
Reinicke
,
T.
,
2022
, “
Characterization of 3D-Printed PLA Parts With Different Raster Orientations and Printing Speeds
,”
Sci. Rep.
,
12
(
1
), p.
1016
.
10.
Ganeshkumar
,
S.
,
Kumar
,
S. D.
,
Magarajan
,
U.
,
Rajkumar
,
S.
,
Arulmurugan
,
B.
,
Sharma
,
S.
,
Li
,
C.
,
Ilyas
,
R. A.
, and
Badran
,
M. F.
,
2022
, “
Investigation of Tensile Properties of Different Infill Pattern Structures of 3D-Printed PLA Polymers: Analysis and Validation Using Finite Element Analysis in ANSYS
,”
Materials (Basel)
,
15
(
15
), p.
5142
.
11.
Alhazmi
,
W.
, and
Backar
,
H.
,
2020
, “
Influence of Infill Density and Orientation on the Mechanical Response of PLA+ Specimens Produced Using FDM 3D Printing
,”
Int. J. Adv. Sci. Technol.
,
29
(
6
), pp.
3362
3371
.
12.
Alvarez
,
C.
,
Kenny
,
L.
,
Lagos
,
C.
,
Rodrigo
,
F.
, and
Aizpun
,
M.
,
2016
, “
Investigating the Influence of Infill Percentage on the Mechanical Properties of Fused Deposition Modelled ABS Parts
,”
Ing. Investig.
,
36
(
3
), pp.
110
116
.
13.
Song
,
R. B.
,
Xiang
,
J. Y.
, and
Hou
,
D. P.
,
2011
, “
Characteristics of Mechanical Properties and Microstructure for 316L Austenitic Stainless Steel
,”
J. Iron Steel Res. Int.
,
18
(
11
), pp.
53
59
.
14.
Novak
,
C.
, and
Peckner
,
D.
,
1977
,
Handbook of Stainless Steels
.
McGraw-Hill
,
New York
.
15.
Atlas Steels
,
2010
,
Handbook of Stainless Steels
,
Atlas Steels Technical Department
,
Australia
.
16.
Honeycombe
,
R. W. K.
, and
Bhadeshia
,
H. K. D. H.
,
1995
,
Microstructure and Properties
, 2nd ed.,
Edward Arnold
,
London
.
17.
Xin
,
J.
,
Song
,
Y.
,
Fang
,
C.
,
Wei
,
J.
,
Huang
,
C.
, and
Wang
,
S.
,
2018
, “
Evaluation of Inter-Granular Corrosion Susceptibility in 316LN Austenitic Stainless Steel Weldments
,”
Fusion Eng. Des.
,
133
, pp.
70
76
.
18.
Pelin
,
C.
,
Stoican
,
G.
,
Stefan
,
A.
,
Pricop
,
M.
,
Ilina
,
S.
, and
Pelin
,
G.
,
2021
, “
Mechanical Properties of 3D Printed Metals
,”
INCAS Bull.
,
13
, pp.
123
129
.
19.
Natali
,
S.
,
Brotzu
,
A.
, and
Pilone
,
D.
,
2019
, “
Comparison Between Mechanical Properties and Structures of a Rolled and a 3D-Printed Stainless Steel
,”
Materials
,
12
(
23
), p.
3867
.
20.
Pacheco
,
J.
,
Meura
,
V.
,
Bloemer
,
P.
,
Veiga
,
M.
,
Filho
,
O.
,
Cunha
,
A.
, and
Teixeira
,
M.
,
2022
, “
Laser Directed Energy Deposition of AISI 316L Stainless Steel: The Effect of Build Direction on Mechanical Properties in As-Built and Heat-Treated Conditions
,”
Adv. Ind. Manuf. Eng.
,
4
, p.
100079
.
21.
Guo
,
P.
,
Zou
,
B.
,
Huang
,
C.
, and
Gao
,
H.
,
2016
, “
Study on Microstructure, Mechanical Properties and Machinability of Efficiently Additive Manufactured AISI 316L Stainless Steel by High-Power Direct Laser Deposition
,”
J. Mater. Process.
,
240
, pp.
12
22
.
22.
Gong
,
H.
,
Snelling
,
D.
,
Kardel
,
K.
, and
Carrano
,
A.
,
2019
, “
Comparison of Stainless Steel 316L Parts Made by FDM- and SLM-Based Additive Manufacturing Processes
,”
SOM
,
71
(
3
), pp.
880
885
.
23.
Damon
,
J.
,
Dietrich
,
S.
,
Gorantla
,
S.
,
Popp
,
U.
,
Okolo
,
B.
, and
Schulze
,
V.
,
2019
, “
Process Porosity and Mechanical Performance of Fused Filament Fabricated 316L Stainless Steel
,”
Rapid Prototyp. J.
,
25
(
7
), pp.
1319
1327
.
24.
Wang
,
Y.
,
Zhang
,
L.
,
Li
,
X.
, and
Yan
,
Z.
,
2011
, “
On Hot Isostatic Pressing Sintering of Fused Filament Fabricated 316L Stainless Steel–Evaluation of Microstructure, Porosity, and Tensile Properties
,”
Mater. Lett.
,
296
, p.
129854
.
25.
Frykholm
,
R.
,
Takeda
,
Y.
,
Andersson
,
B.
, and
Carlström
,
R.
,
2016
, “
Solid State Sintered 3D Printing Component by Using Inkjet (Binder) Method
,”
J. Japan Soc. Powder Metall.
,
63
(
7
), pp.
421
426
.
26.
Berginc
,
B.
,
Kampus
,
Z.
, and
Sustarsic
,
B.
,
2006
, “
The Influence of MIM and Sintering-Process Parameters on the Mechanical Properties of 316l SS
,”
Mater. Tehnol.
,
40
, p.
193
.
27.
Safaka
,
J.
,
Ackermann
,
M.
,
Machacek
,
J.
,
Seidl
,
M.
,
Véle
,
F.
, and
Truxová
,
V.
,
2020
, “
Fabrication Process and Basic Material Properties of the BASF Ultrafuse 316lx Material
,”
MM Sci. J.
,
2020
(
5
), pp.
4216
4222
.
28.
Schumacher
,
C.
, and
Moritzer
,
E.
,
2021
, “
Stainless Steel Parts Produced by Fused Deposition Modeling and a Sintering Process Compared to Components Manufactured in Selective Laser Melting
,”
Macromol. Symp.
,
395
(
1
), p.
2000275
.
29.
Yadollahi
,
A.
,
Shamsaei
,
N.
,
Thompson
,
S.
, and
Seely
,
D.
,
2015
, “
Effects of Process Time Interval and Heat Treatment on the Mechanical and Microstructural Properties of Direct Laser Deposited 316L Stainless Steel
,”
Mater. Sci. Eng. A
,
644
, pp.
171
183
.
30.
Saeidi
,
K.
,
Gao
,
X.
,
Zhong
,
Y.
, and
Shen
,
J.
,
2015
, “
Hardened Austenite Steel With Columnar Sub-Grain Structure Formed by Laser Melting
,”
Mater. Sci. Eng. A
,
625
, pp.
221
229
.
31.
Yusuf
,
S.
,
Chen
,
Y.
,
Boardman
,
R.
,
Yang
,
S.
, and
Gao
,
N.
,
2017
, “
Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting
,”
Metals
,
7
(
2
), p.
64
.
32.
Tolosa
,
I.
,
Garciandía
,
F.
,
Zubiri
,
F.
,
Zapirain
,
F.
, and
Esnaola
,
A.
,
2010
, “
Study of Mechanical Properties of AISI 316 Stainless Steel Processed by ‘Selective Laser Melting’, Following Different Manufacturing Strategies
,”
Int. J. Adv. Manuf. Technol.
,
51
(
5–8
), pp.
639
647
.
You do not currently have access to this content.