Abstract

3D printing is a layer-by-layer deposition process, which results in highly anisotropic structures and contains interfaces. Complex shapes manufactured by 3D printing carry defects. Complete elimination of these defects and interfaces is not possible, and these defects degrade the mechanical properties. In the present study, mechanical properties of printed dog bone samples are quantified as a function of building parameters, in particular, filling patterns, raster angle, and orientation of build direction with respect to that of loading, in polylactic acid (PLA). The tensile strength of 3D-printed PLA is the same for hexagonal and linear pattern filling when the build direction is along thickness and width, and failure was initiated at the defects in the structure, while better overall toughness is offered by hexagonal pattern filling. Build direction along specimen gauge length gives very low tensile strength and toughness, and failure happens between the printing layers. To minimize the defects especially near the grip section, cuboid samples were first deposited and micro-machined by laser into dog bone shape to perform tension test. Tensile strength and elastic modulus of micro-machined samples are surprisingly lower, while failure strain is highest among line filling printed samples. Damage resistance was quantified in terms of work of fracture, and hexagonal filling provided better damage resistance than line filling patterns for conditions of 0 deg raster angle with respect to the crack, whereas line filling with 45 deg and 90 deg raster angle tolerated damage better than hexagonal filling.

References

1.
Mehrpouya
,
M.
,
Vahabi
,
H.
,
Barletta
,
M.
,
Laheurte
,
P.
, and
Langlois
,
V.
,
2021
, “
Additive Manufacturing of Polyhydroxyalkanoates (PHAs) Biopolymers: Materials, Printing Techniques, and Applications
,”
Mater. Sci. Eng. C
,
127
, p.
112216
.
2.
Lee Ventola
,
C.
,
2014
, “
Medical Applications for 3D Printing: Current and Projected Uses
,”
Pharm. Ther.
,
39
(
10
), pp.
704
711
.
3.
Giffi
,
C. A.
,
Gangula
,
B.
, and
Illinda
,
P.
,
2014
,
3D Opportunity for the Automotive Industry
,
University Press
,
Deloitte
, p.
28
.
4.
Gibson
,
I.
,
Kvan
,
T.
, and
Ming
,
L. W.
,
2002
, “
Rapid Prototyping for Architectural Models
,”
Rapid Prototyp. J.
,
8
(
2
), pp.
91
99
.
5.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
, pp.
1
10
.
6.
Dizon
,
J. R. C.
,
Espera
,
A. H.
,
Chen
,
Q.
, and
Advincula
,
R. C.
,
2018
, “
Mechanical Characterization of 3D-Printed Polymers
,”
Addit. Manuf.
,
20
, pp.
44
67
.
7.
Croccolo
,
D.
,
De Agostinis
,
M.
, and
Olmi
,
G.
,
2013
, “
Experimental Characterization and Analytical Modelling of the Mechanical Behaviour of Fused Deposition Processed Parts Made of ABS-M30
,”
Comput. Mater. Sci.
,
79
, pp.
506
518
.
8.
Sood
,
A. K.
,
Ohdar
,
R. K.
, and
Mahapatra
,
S. S.
,
2010
, “
Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts
,”
Mater. Des.
,
31
(
1
), pp.
287
295
.
9.
Ahn
,
S. H.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyp. J.
,
8
(
4
), pp.
248
257
.
10.
Tymrak
,
B. M.
,
Kreiger
,
M.
, and
Pearce
,
J. M.
,
2014
, “
Mechanical Properties of Components Fabricated With Open-Source 3-D Printers Under Realistic Environmental Conditions
,”
Mater. Des.
,
58
, pp.
242
246
.
11.
Wang
,
X.
,
Jiang
,
M.
,
Zhou
,
Z.
,
Gou
,
J.
, and
Hui
,
D.
,
2017
, “
3D Printing of Polymer Matrix Composites: A Review and Prospective
,”
Compos. Part B: Eng.
,
110
, pp.
442
458
.
12.
Peng
,
A.
,
Xiao
,
X.
, and
Yue
,
R.
,
2014
, “
Process Parameter Optimization for Fused Deposition Modeling Using Response Surface Methodology Combined With Fuzzy Inference System
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1–4
), pp.
87
100
.
13.
Anitha
,
R.
,
Arunachalam
,
S.
, and
Radhakrishnan
,
P.
,
2001
, “
Critical Parameters Influencing the Quality of Prototypes in Fused Deposition Modelling
,”
J. Mater. Process. Technol.
,
118
(
1–3
), pp.
385
388
.
14.
Tang
,
C.
,
Liu
,
J.
,
Yang
,
Y.
,
Liu
,
Y.
,
Jiang
,
S.
, and
Hao
,
W.
,
2020
, “
Effect of Process Parameters on Mechanical Properties of 3D Printed PLA Lattice Structures
,”
Compos. Part C: Open Access
,
3
(
Sept.
), p.
100076
.
15.
Wang
,
S.
,
Ma
,
Y.
,
Deng
,
Z.
,
Zhang
,
S.
, and
Cai
,
J.
,
2020
, “
Effects of Fused Deposition Modeling Process Parameters on Tensile, Dynamic Mechanical Properties of 3D Printed Polylactic Acid Materials
,”
Polym. Test.
,
86
, p.
106483
.
16.
Suteja
,
T. J.
, and
Soesanti
,
A.
,
2020
, “
Mechanical Properties of 3D Printed Polylactic Acid Product for Various Infill Design Parameters: A Review
,”
J. Phys.: Conf. Ser.
,
1569
(
4
), p.
042010
.
17.
Tontowi
,
A. E.
,
Ramdani
,
L.
,
Erdizon
,
R. V.
, and
Baroroh
,
D. K.
,
2017
, “
Optimization of 3D-Printer Process Parameters for Improving Quality of Polylactic Acid Printed Part
,”
Int. J. Eng. Technol.
,
9
(
2
), pp.
589
600
.
18.
Heidari-Rarani
,
M.
,
Ezati
,
N.
,
Sadeghi
,
P.
, and
Badrossamay
,
M. R.
,
2020
, “
Optimization of FDM Process Parameters for Tensile Properties of Polylactic Acid Specimens Using Taguchi Design of Experiment Method
,”
J. Thermoplast. Compos. Mater.
,
35
(
12
), pp.
2435
2452
.
19.
Kafshgar
,
A. R.
,
Rostami
,
S.
,
Aliha
,
M.
, and
Berto
,
F.
,
2021
, “
Optimization of Properties for 3D Printed PLA Material Using Taguchi, ANOVA and Multi-Objective Methodologies
,”
Proc. Struct. Integr.
,
34
, pp.
71
77
.
20.
Camargo
,
J. C.
,
Machado
,
ÁR
,
Almeida
,
E. C.
, and
Silva
,
E. F. M. S.
,
2019
, “
Mechanical Properties of PLA-Graphene Filament for FDM 3D Printing
,”
Int. J. Adv. Manuf. Technol.
,
103
(
5–8
), pp.
2423
2443
.
21.
McLouth
,
T. D.
,
Severino
,
J. V.
,
Adams
,
P. M.
,
Patel
,
D. N.
, and
Zaldivar
,
R. J.
,
2017
, “
The Impact of Print Orientation and Raster Pattern on Fracture Toughness in Additively Manufactured ABS
,”
Addit. Manuf.
,
18
, pp.
103
109
.
22.
Bahrami
,
B.
,
Ayatollahi
,
M. R.
,
Sedighi
,
I.
,
Pérez
,
M. A.
, and
Garcia-Granada
,
A. A.
,
2020
, “
The Effect of In-Plane Layer Orientation on Mixed-Mode I-II Fracture Behavior of 3D-Printed Poly-Carbonate Specimens
,”
Eng. Fract. Mech.
,
231
, p.
107018
.
23.
Samykano
,
M.
,
Selvamani
,
S. K.
,
Kadirgama
,
K.
,
Ngui
,
W. K.
,
Kanagaraj
,
G.
, and
Sudhakar
,
K.
,
2019
, “
Mechanical Property of FDM Printed ABS: Influence of Printing Parameters
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
2779
2796
.
24.
Hart
,
K. R.
, and
Wetzel
,
E. D.
,
2017
, “
Fracture Behavior of Additively Manufactured Acrylonitrile Butadiene Styrene (ABS) Materials
,”
Eng. Fract. Mech.
,
177
, pp.
1
13
.
25.
Ayatollahi
,
M. R.
,
Nabavi-Kivi
,
A.
,
Bahrami
,
B.
,
Yazid Yahya
,
M.
, and
Khosravani
,
M. R.
,
2020
, “
The Influence of In-Plane Raster Angle on Tensile and Fracture Strengths of 3D-Printed PLA Specimens
,”
Eng. Fract. Mech.
,
237
, p.
107225
.
26.
Sun
,
Q.
,
Rizvi
,
G. M.
,
Bellehumeur
,
C. T.
, and
Gu
,
P.
,
2008
, “
Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments
,”
Rapid Prototyp. J.
,
14
(
2
), pp.
72
80
.
27.
Sood
,
A. K.
,
Ohdar
,
R. K.
, and
Mahapatra
,
S. S.
,
2012
, “
Experimental Investigation and Empirical Modelling of FDM Process for Compressive Strength Improvement
,”
J. Adv. Res.
,
3
(
1
), pp.
81
90
.
28.
Li
,
J.
,
Yang
,
S.
,
Li
,
D.
, and
Chalivendra
,
V.
,
2018
, “
Numerical and Experimental Studies of Additively Manufactured Polymers for Enhanced Fracture Properties
,”
Eng. Fract. Mech.
,
204
(
Nov.
), pp.
557
569
.
29.
Yadav
,
D.
,
More
,
T.
, and
Jaya
,
B. N.
,
2022
, “
Morse-Code Inspired Architectures for Tunable Damage Tolerance in Brittle Material Systems
,”
J. Mater. Res.
,
37
(
6
), pp.
1201
1215
.
30.
Tattersall
,
H. G.
, and
Tappin
,
G.
,
1966
, “
The Work of Fracture and its Measurement in Metals, Ceramics and Other Materials
,”
J. Mater. Sci.
,
1
(
3
), pp.
296
301
.
31.
Petersson
,
P. E.
,
1980
, “
Fracture Energy of Concrete: Practical Performance and Experimental Results
,”
Cem. Concr. Res.
,
10
(
1
), pp.
91
101
.
32.
Barinov
,
S. M.
, and
Sakai
,
M.
,
1994
, “
The Work-of-Fracture of Brittle Materials: Principle, Determination, and Applications
,”
J. Mater. Res.
,
9
(
6
), pp.
1412
1425
.
33.
Martinez
,
A. B.
,
Gamez-Perez
,
J.
,
Sanchez-Soto
,
M.
,
Velasco
,
J. I.
,
Santana
,
O. O.
, and
Ll Maspoch
,
M.
,
2009
, “
The Essential Work of Fracture (EWF) Method—Analyzing the Post-Yielding Fracture Mechanics of Polymers
,”
Eng. Fail. Anal.
,
16
(
8
), pp.
2604
2617
.
34.
Courtney
,
T. H.
,
2009
,
Mechanical Behavior of Materials—Second Edition
,
Waveland Press, Inc.
,
Long Grove, IL
.
35.
Schwarz
,
K. T.
,
Kormout
,
K. S.
,
Pippan
,
R.
, and
Hohenwarter
,
A.
,
2017
, “
Impact of Severe Plastic Deformation on Microstructure and Fracture Toughness Evolution of a Duplex-Steel
,”
Mater. Sci. Eng. A
,
703
, pp.
173
179
.
36.
Bellehumeur
,
C.
,
Li
,
L.
,
Sun
,
Q.
, and
Gu
,
P.
,
2004
, “
Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process
,”
J. Manuf. Process.
,
6
(
2
), pp.
170
178
.
37.
Akhoundi
,
B.
, and
Behravesh
,
A. H.
,
2019
, “
Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products
,”
Exp. Mech.
,
59
(
6
), pp.
883
897
.
38.
Chalgham
,
A.
,
Ehrmann
,
A.
, and
Wickenkamp
,
I.
,
2021
, “
Mechanical Properties of FDM Printed PLA Parts Before and After Thermal Treatment
,”
Polymers (Basel)
,
13
(
8
), p.
1239
.
39.
Jayanth
,
N.
,
Jaswanthraj
,
K.
,
Sandeep
,
S.
,
Mallaya
,
N. H.
, and
Siddharth
,
S. R.
,
2021
, “
Effect of Heat Treatment on Mechanical Properties of 3D Printed PLA
,”
J. Mech. Behav. Biomed. Mater.
,
123
, p.
104764
.
You do not currently have access to this content.