Abstract

We use three-dimensional printing to manufacture lattices with uniform and graded relative density, made from a composite parent material comprising a nylon matrix reinforced by short carbon fibers. The elastic–plastic compressive response of these solids is measured up to their densification regime. Data from experiments on the lattices with uniform relative density are used to deduce the dependence of their elastic–plastic homogenized constitutive response on their relative density, in the range 0.2–0.8. These data are used to calibrate finite element (FE) simulations of the compressive response of functionally graded lattices (FGLs), which are found in good agreement with the corresponding measurements, capturing the salient features of the measured stress versus strain responses. This exercise is repeated for two lattice topologies (body-centered cubic and Schwarz-P). The phenomenological constitutive models produced in this study can be used in topology optimization to maximize the performance of 3D-printed FGLs components in terms of stiffness, strength, or energy absorption.

References

1.
Panesar
,
A.
,
Abdi
,
M.
,
Hickman
,
D.
, and
Ashcroft
,
I.
,
2018
, “
Strategies for Functionally Graded Lattice Structures Derived Using Topology Optimisation for Additive Manufacturing
,”
Addit. Manuf.
,
19
, pp.
81
94
.
2.
Maskery
,
I.
,
Aremu
,
A. O.
,
Parry
,
L.
,
Wildman
,
R. D.
,
Tuck
,
C. J.
, and
Ashcroft
,
I. A.
,
2018
, “
Effective Design and Simulation of Surface-Based Lattice Structures Featuring Volume Fraction and Cell Type Grading
,”
Mater. Des.
,
155
, pp.
220
232
.
3.
Yang
,
N.
,
Quan
,
Z.
,
Zhang
,
D.
, and
Tian
,
Y.
,
2014
, “
Multi-Morphology Transition Hybridization CAD Design of Minimal Surface Porous Structures for Use in Tissue Engineering
,”
CAD Comput. Aided Des.
,
56
, pp.
11
21
.
4.
Maskery
,
I.
,
Hussey
,
A.
,
Panesar
,
A.
,
Aremu
,
A.
,
Tuck
,
C.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2017
, “
An Investigation Into Reinforced and Functionally Graded Lattice Structures
,”
J. Cell. Plast.
,
53
(
2
), pp.
151
165
.
5.
Plocher
,
J.
, and
Panesar
,
A.
,
2020
, “
Effect of Density and Unit Cell Size Grading on the Stiffness and Energy Absorption of Short Fibre-Reinforced Functionally Graded Lattice Structures
,”
Addit. Manuf.
,
33
, p.
101171
.
6.
Plocher
,
J.
, and
Panesar
,
A.
,
2019
, “
Mechanical Performance of Additively Manufactured Fiber-Reinforced Functionally Graded Lattices
,”
JOM
,
72
(
3
), pp.
1292
1298
.
7.
Plocher
,
J.
, and
Panesar
,
A.
,
2019
, “
Review on Design and Structural Optimisation in Additive Manufacturing: Towards Next-Generation Lightweight Structures
,”
Mater. Des.
,
183
, p.
108164
.
8.
Yang
,
L.
,
Yan
,
C.
,
Han
,
C.
,
Chen
,
P.
,
Yang
,
S.
, and
Shi
,
Y.
,
2018
, “
Mechanical Response of a Triply Periodic Minimal Surface Cellular Structures Manufactured by Selective Laser Melting
,”
Int. J. Mech. Sci.
,
148
, pp.
149
157
.
9.
Yu
,
S.
,
Sun
,
J.
, and
Bai
,
J.
,
2019
, “
Investigation of Functionally Graded TPMS Structures Fabricated by Additive Manufacturing
,”
Mater. Des.
,
182
, p.
108021
.
10.
Abueidda
,
D. W.
,
Bakir
,
M.
,
Abu Al-Rub
,
R. K.
,
Bergström
,
J. S.
,
Sobh
,
N. A.
, and
Jasiuk
,
I.
,
2017
, “
Mechanical Properties of 3D Printed Polymeric Cellular Materials With Triply Periodic Minimal Surface Architectures
,”
Mater. Des.
,
122
, pp.
255
267
.
11.
Zhou
,
H.
,
Zhao
,
M.
,
Ma
,
Z.
,
Zhang
,
D. Z.
, and
Fu
,
G.
,
2020
, “
Sheet and Network Based Functionally Graded Lattice Structures Manufactured by Selective Laser Melting : Design, Mechanical Properties, and Simulation
,”
Int. J. Mech. Sci.
,
175
, p.
105480
.
12.
Montoya-Zapata
,
D.
,
Acosta
,
D. A.
,
Cortés
,
C.
, and
Pareja-Corcho
,
J.
,
2020
, “
Approximation of the Mechanical Response of Large Lattice Domains Using Homogenization and Design of Experiments
,”
Appl. Sci.
,
10
(
11
), p.
3858
.
13.
Peng
,
C.
, and
Tran
,
P.
,
2020
, “
Bioinspired Functionally Graded Gyroid Sandwich Panel Subjected to Impulsive Loadings
,”
Compos. Part B Eng.
,
188
, p.
107773
.
14.
Bergström
,
J.
,
2009
, “
Material Model Calibration (PolyUMod)
,” Veryst Eng. LLC. https://www.veryst.com/services/material-modeling/material-model-calibration. Accessed February 2022.
15.
Zhao
,
C.
,
Li
,
G.
,
Zhang
,
M.
, and
Luo
,
W.
,
2020
, “
A Discretization Method for Predicting the Equivalent Elastic Parameters of the Graded Lattice Structure
,”
Adv. Mech. Eng.
,
12
(
12
), pp.
1
13
.
16.
Steven
,
P. G.
,
1997
, “
Homogenization of Multicomponent Composite Orthotropic Materials Using FEA
,”
Commun. Numer. Methods Eng.
,
13
(
7
), pp.
517
531
.
17.
Cheng
,
L.
,
Bai
,
J.
, and
To
,
A. C.
,
2019
, “
Functionally Graded Lattice Structure Topology Optimization for the Design of Additive Manufactured Components With Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
334
359
.
18.
Al-Rub
,
A.
,
Lee
,
R. K.
,
Khan
,
D. W.
,
and Palazotto
,
K. A.
, and
N
,
A.
,
2020
, “
Effective Anisotropic Elastic and Plastic Yield Properties of Periodic Foams Derived From Triply Periodic Schoen’s I-WP Minimal Surface
,”
J. Eng. Mech.
,
146
(
5
), p.
04020030
.
19.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6
), pp.
1253
1283
.
20.
Tagarielli
,
V. L.
,
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Chen
,
C.
,
2005
, “
A Constitutive Model for Transversely Isotropic Foams, and Its Application to the Indentation of Balsa Wood
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
666
686
.
21.
Zhang
,
P.
,
Toman
,
J.
,
Yu
,
Y.
,
Biyikli
,
E.
,
Kirca
,
M.
,
Chmielus
,
M.
, and
To
,
A. C.
,
2015
, “
Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021004
.
22.
Robbins
,
J.
,
Owen
,
S. J.
,
Clark
,
B. W.
, and
Voth
,
T. E.
,
2016
, “
An Efficient and Scalable Approach for Generating Topologically Optimized Cellular Structures for Additive Manufacturing
,”
Addit. Manuf.
,
12
, pp.
296
304
.
23.
Song
,
G. H.
,
Jing
,
S. K.
,
Zhao
,
F. L.
,
Wang
,
Y. D.
,
Xing
,
H.
, and
Zhou
,
J. T.
,
2017
, “
Design Optimization of Irregular Cellular Structure for Additive Manufacturing
,”
Chinese J. Mech. Eng. (English Ed.)
,
30
(
5
), pp.
1184
1192
.
24.
Aremu
,
A. O.
,
Brennan-Craddock
,
J.
,
Panesar
,
A.
,
Ashcroft
,
I. A.
,
Hague
,
R. J. M.
,
Wildman
,
R. D.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
(
1
), pp.
1
13
.
25.
Markforged, Inc.
,
2017
, “
Composite 3D Printing
,” https://markforged.com/composites/, Accessed February 14, 2022.
26.
Chen
,
Y.
, and
He
,
Q.
,
2020
, “
3D-Printed Short Carbon Fibre Reinforced Perforated Structures With Negative Poisson’s Ratios: Mechanisms and Design
,”
Compos. Struct.
,
236
, p.
111859
.
27.
Sauer
,
M. J.
,
2018
,
Evaluation of the Mechanical Properties of 3D Printed Carbon Fiber Composites
,
South Dakota State University
,
Brookings, SD
.
28.
Naranjo-Lozada
,
J.
,
Ahuett-Garza
,
H.
,
Orta-Castañón
,
P.
,
Verbeeten
,
W. M. H.
, and
Sáiz-González
,
D.
,
2019
, “
Tensile Properties and Failure Behavior of Chopped and Continuous Carbon Fiber Composites Produced by Additive Manufacturing
,”
Addit. Manuf.
,
26
, pp.
227
241
.
29.
Isobe
,
T.
,
Tanaka
,
T.
,
Nomura
,
T.
, and
Yuasa
,
R.
,
2018
, “
Comparison of Strength of 3D Printing Objects Using Short Fiber and Continuous Long Fiber
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
406
(
1
), p.
012030
.
30.
Lewicki
,
J. P.
,
Rodriguez
,
J. N.
,
Zhu
,
C.
,
Worsley
,
M. A.
,
Wu
,
A. S.
,
Kanarska
,
Y.
,
Horn
,
J. D.
, et al
,
2017
, “
3D-Printing of Meso-Structurally Ordered Carbon Fiber/Polymer Composites With Unprecedented Orthotropic Physical Properties
,”
Sci. Rep.
,
7
(
1
), pp.
1
14
.
31.
Tekinalp
,
H. L.
,
Kunc
,
V.
,
Velez-Garcia
,
G. M.
,
Duty
,
C. E.
,
Love
,
L. J.
,
Naskar
,
A. K.
,
Blue
,
C. A.
, and
Ozcan
,
S.
,
2014
, “
Highly Oriented Carbon Fiber-Polymer Composites via Additive Manufacturing
,”
Compos. Sci. Technol.
,
105
, pp.
144
150
.
32.
2018
, “
Dassault Systèmes. Abaqus CAE. (Version 2018) [Software] Dassault Systèmes
,” https://www.3ds.com/products-services/simulia/products/abaqus/abaquscae/. Accessed June 2, 2018.
33.
2017
, “
Crushable Foam Plasticity Models
,” Abaqus Doc. https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-crushfoam.htm, Accessed February 2021.
34.
Gibson
,
I.
, and
Ashby
,
M.
,
1997
,
Cellular Solids: Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.