Abstract

A comprehensive assessment of interstitial hydrogen on the elastic behavior across different metals (Al, Ni, Fe, Nb, Ti, and Zr) was carried out using first-principles calculations. The volumetric strain introduced by interstitial hydrogen had a key role in the observed variation in elastic constants. However, in Nb, Ti, and Zr, the host and hydrogen atoms interact strongly which had a significant contribution towards the variation in elastic response due to the presence of hydrogen. The addition of hydrogen reduced the resistance to shear deformation along respective active slip systems for all the metals, except Nb. Similarly, the homogenized macroscopic approximation of Young’s and shear moduli also demonstrated a drop with increasing hydrogen concentration across all the metals, apart from Nb. Finally, these findings accurately quantify the variation in elastic behavior of various metals when exposed to a hydrogen rich environment.

References

1.
Robertson
,
I. M.
,
Sofronis
,
P.
,
Nagao
,
A.
,
Martin
,
M. L.
,
Wang
,
S.
,
Gross
,
D. W.
, and
Nygren
,
K. E.
,
2015
, “
Hydrogen Embrittlement Understood
,”
Metall. Mater. Trans.
,
46
(
6
), pp.
2323
2341
.
2.
Dwivedi
,
S. K.
, and
Vishwakarma
,
M.
,
2018
, “
Hydrogen Embrittlement in Different Materials: A Review
,”
Int. J. Hydrog. Energy
,
43
(
46
), pp.
21603
21616
.
3.
Birnbaum
,
H. K.
,
1984
, “
Mechanical Properties of Metal Hydrides
,”
J. Less-Common Met.
,
104
(
1
), pp.
31
41
.
4.
Barrera
,
O.
,
Bombac
,
D.
,
Chen
,
Y.
,
Daff
,
T. D.
,
Galindo-Nava
,
E.
,
Gong
,
P.
,
Haley
,
D.
, et al
,
2018
, “
Understanding and Mitigating Hydrogen Embrittlement of Steels: A Review of Experimental, Modelling and Design Progress From Atomistic to Continuum
,”
J. Mater. Sci.
,
53
(
9
), pp.
6251
6290
.
5.
Lynch
,
Stan
,
2011
,
Stress Corrosion Cracking
, Vol.
30
,
Elsevier
,
New York
, pp.
90
130
.
6.
Louthan
,
M. R.
,
Caskey
,
G. R.
,
Donovan
,
J. A.
, and
Rawl
,
D. E.
,
1972
, “
Hydrogen Embrittlement of Metals
,”
Mater. Sci. Eng.
,
10
, pp.
357
368
.
7.
Nelson
,
H. G.
,
1983
, “Hydrogen Embrittlement,”
Treatise on Materials Science & Technology
,
C. L.
Briant
, and
S. K.
Banerji
, eds.,
Elsevier
,
New York
, pp.
275
359
.
8.
Dadfarnia
,
M.
,
Nagao
,
A.
,
Wang
,
S.
,
Martin
,
M. L.
,
Somerday
,
B. P.
, and
Sofronis
,
P.
,
2015
, “
Recent Advances on Hydrogen Embrittlement of Structural Materials
,”
Int. J. Fract.
,
196
(
1–2
), pp.
223
243
.
9.
Westlake
,
D. G.
,
1969
, “
Generalized Model for Hydrogen Embrittlement
,”
Trans. Amer. Math. Soc.
,
62
, pp.
1000
1006
. Accessed August 16, 2021.
10.
Harris
,
Z. D.
,
Lawrence
,
S. K.
,
Medlin
,
D. L.
,
Guetard
,
G.
,
Burns
,
J. T.
, and
Somerday
,
B. P.
,
2018
, “
Elucidating the Contribution of Mobile Hydrogen-Deformation Interactions to Hydrogen-Induced Intergranular Cracking in Polycrystalline Nickel
,”
Acta Mater.
,
158
, pp.
180
192
.
11.
Demetriou
,
V.
,
Robson
,
J. D.
,
Preuss
,
M.
, and
Morana
,
R.
,
2017
, “
Study of the Effect of Hydrogen Charging on the Tensile Properties and Microstructure of Four Variant Heat Treatments of Nickel Alloy 718
,”
Int. J. Hydrog. Energy
,
42
(
37
), pp.
23856
23870
.
12.
Su
,
H.
,
Toda
,
H.
,
Masunaga
,
R.
,
Shimizu
,
K.
,
Gao
,
H.
,
Sasaki
,
K.
,
Bhuiyan
,
M. S.
,
Uesugi
,
K.
,
Takeuchi
,
A.
, and
Watanabe
,
Y.
,
2018
, “
Influence of Hydrogen on Strain Localization and Fracture Behavior in AlZnMgCu Aluminum Alloys
,”
Acta Mater.
,
159
, pp.
332
343
.
13.
Takano
,
N.
,
2008
, “
Hydrogen Diffusion and Embrittlement in 7075 Aluminum Alloy
,”
Mater. Sci. Eng. A
,
483–484
, pp.
336
339
.
14.
Rajagopalan
,
M.
,
Tschopp
,
M. A.
, and
Solanki
,
K. N.
,
2014
, “
Grain Boundary Segregation of Interstitial and Substitutional Impurity Atoms in Alpha-Iron
,”
JOM
,
66
(
1
), pp.
129
138
.
15.
Rajagopalan
,
M.
,
Adlakha
,
I.
,
Tschopp
,
M. A.
, and
Solanki
,
K. N.
,
2017
, “
Energetics of Hydrogen Segregation to α-Fe Grain Boundaries for Modeling Stress Corrosion Cracking
,”
JOM
,
69
(
8
), pp.
1398
1403
.
16.
Adlakha
,
I.
, and
Solanki
,
K. N.
,
2016
, “
Atomic-Scale Investigation of Triple Junction Role on Defects Binding Energetics and Structural Stability in α-Fe
,”
Acta Mater.
,
118
, pp.
64
76
.
17.
Coleman
,
C. E.
, and
Hardie
,
D.
,
1966
, “
The Hydrogen Embrittlement of α-Zirconium—A Review
,”
J. Less-Common Met.
,
11
(
3
), pp.
168
185
.
18.
Hsu
,
H.-H.
, and
Tsay
,
L.-W.
,
2011
, “
Effect of Hydride Orientation on Fracture Toughness of Zircaloy-4 Cladding
,”
J. Nucl. Mater.
,
408
(
1
), pp.
67
72
.
19.
Marshall
,
R. P.
, and
Louthan
,
M. R.
,
1963
, “
Tensile Properties of Zircaloy With Oriented Hydrides
,”
Trans. ASME.
,
56
, pp.
693
700
.
20.
Sudarshan
,
T. S.
,
Pruitt
,
N. C.
,
Louthan
,
M. R.
, Jr.
, and
Place
,
T. A.
,
1985
, “
Susceptibility of a Dual Phase Steel to Hydrogen Embrittlement
,”
ASME J. Eng. Mater. Technol.
,
107
(
4
), pp.
343
345
.
21.
Myers
,
S. M.
,
Baskes
,
M. I.
,
Birnbaum
,
H. K.
,
Corbett
,
J. W.
,
DeLeo
,
G. G.
,
Estreicher
,
S. K.
,
Haller
,
E. E.
, et al
,
1992
, “
Hydrogen Interactions With Defects in Crystalline Solids
,”
Rev. Mod. Phys.
,
64
(
2
), pp.
559
617
.
22.
Adlakha
,
I.
, and
Solanki
,
K. N.
,
2016
, “
Critical Assessment of Hydrogen Effects on the Slip Transmission Across Grain Boundaries in α-Fe
,”
Proc. R. Soc. A.
,
472
(
2185
), p.
20150617
.
23.
Lu
,
G.
, and
Kaxiras
,
E.
,
2005
, “
Hydrogen Embrittlement of Aluminum: The Crucial Role of Vacancies
,”
Phys. Rev. Lett.
,
94
(
15
), p.
155501
.
24.
Robertson
,
I.
, and
Birnbaum
,
H.
,
1986
, “
An HVEM Study of Hydrogen Effects on the Deformation and Fracture of Nickel
,”
Acta Metall.
,
34
(
3
), pp.
353
366
.
25.
Shih
,
D. S.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
,
1988
, “
Hydrogen Embrittlement of α Titanium: In Situ Tem Studies
,”
Acta Metall.
,
36
(
1
), pp.
111
124
.
26.
Ferreira
,
P. J.
,
Robertson
,
I. M.
, and
Birnbaum
,
H. K.
,
1998
, “
Hydrogen Effects on the Interaction Between Dislocations
,”
Acta Mater.
,
46
(
5
), pp.
1749
1757
.
27.
Depover
,
T.
, and
Verbeken
,
K.
,
2018
, “
The Detrimental Effect of Hydrogen at Dislocations on the Hydrogen Embrittlement Susceptibility of Fe-C-X Alloys: An Experimental Proof of the HELP Mechanism
,”
Int. J. Hydrog. Energy
,
43
(
5
), pp.
3050
3061
.
28.
Sofronis
,
P.
,
Liang
,
Y.
, and
Aravas
,
N.
,
2001
, “
Hydrogen Induced Shear Localization of the Plastic Flow in Metals and Alloys
,”
Eur. J. Mech. A-Solid.
,
20
(
6
), pp.
857
872
.
29.
Beachem
,
C. D.
,
1972
, “
A New Model for Hydrogen-Assisted Cracking (Hydrogen “Embrittlement”)
,”
Metall. Mater. Trans. B
,
3
(
2
), pp.
441
455
.
30.
Lee
,
D.-H.
,
Lee
,
J.-A.
,
Seok
,
M.-Y.
,
Baek
,
U. B.
,
Nahm
,
S. H.
, and
Jang
,
J.
,
2014
, “
Stress-Dependent Hardening-to-Softening Transition of Hydrogen Effects in Nanoindentation of a Linepipe Steel
,”
Int. J. Hydrog. Energy
,
39
(
4
), pp.
1897
1902
.
31.
Hou
,
S.
,
Lei
,
H.
, and
Zeng
,
Z.
,
2016
, “
Hydrogen Influence on Generalized Stacking Fault Energies of Zr {0001} Basal Plane: A First-Principles Study
,”
RSC Adv.
,
6
(
59
), pp.
54371
54376
.
32.
Kumar
,
P.
,
Garg
,
P.
,
Solanki
,
K. N.
, and
Adlakha
,
I.
,
2021
, “
Effect of Hydrogen on the Ideal Shear Strength in Metals and Its Implications on Plasticity: A First-Principles Study
,”
Int. J. Hydrog. Energy
,
46
(
50
), pp.
25726
25737
.
33.
Meng
,
F.-S.
,
Du
,
J.-P.
,
Shinzato
,
S.
,
Mori
,
H.
,
Yu
,
P.
,
Matsubara
,
K.
,
Ishikawa
,
N.
, and
Ogata
,
S.
,
2021
, “
General-Purpose Neural Network Interatomic Potential for the α-Iron and Hydrogen Binary System: Toward Atomic-Scale Understanding of Hydrogen Embrittlement
,”
Phys. Rev. Mater.
,
5
(
11
), p.
113606
.
34.
Zhao
,
Y.
, and
Lu
,
G.
,
2011
, “
QM/MM Study of Dislocation—Hydrogen/Helium Interactions in α-Fe
,”
Modell. Simul. Mater. Sci. Eng.
,
19
(
6
), p.
065004
.
35.
Dwivedi
,
S. K.
, and
Vishwakarma
,
M.
,
2018
, “
Hydrogen Embrittlement in Different Materials: A Review
,”
Int. J. Hydrog. Energy
,
43
(
46
), pp.
21603
21616
.
36.
Koyama
,
M.
,
Akiyama
,
E.
,
Lee
,
Y.-K.
,
Raabe
,
D.
, and
Tsuzaki
,
K.
,
2017
, “
Overview of Hydrogen Embrittlement in High-Mn Steels
,”
Int. J. Hydrog. Energy
,
42
(
17
), pp.
12706
12723
.
37.
Scully
,
J. R.
,
Young
,
G. A.
, and
Smith
,
S. W.
,
2012
, “Hydrogen Embrittlement of Aluminum and Aluminum-Based Alloys,”
Gaseous Hydrogen Embrittlement of Materials in Energy Technologies
,
RP
Gangloff
, and
BP
Somerday
, eds.,
Woodhead Publishing
,
UK
, pp.
707
768
.
38.
Louthan
,
M. R.
, Jr.
,
2008
, “
Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst
,”
J. Fail. Anal. Preven.
,
8
(
3
), pp.
289
307
.
39.
Kirchheim
,
R.
,
2010
, “
Revisiting Hydrogen Embrittlement Models and Hydrogen-Induced Homogeneous Nucleation of Dislocations
,”
Scr. Mater.
,
62
(
2
), pp.
67
70
.
40.
Kirchheim
,
R.
,
2007
, “
Reducing Grain Boundary, Dislocation Line and Vacancy Formation Energies by Solute Segregation. I. Theoretical Background
,”
Acta Mater.
,
55
(
15
), pp.
5129
5138
.
41.
Metsue
,
A.
,
Oudriss
,
A.
, and
Feaugas
,
X.
,
2014
, “
Displacement Field Induced by a Vacancy in Nickel and Some Implications for the Solubility of Hydrogen
,”
Philos. Mag.
,
94
(
34
), pp.
3978
3991
.
42.
Fisher
,
E. S.
,
Westlake
,
D. G.
, and
Ockers
,
S. T.
,
1975
, “
Effects of Hydrogen and Oxygen on the Elastic Moduli of Vanadium, Niobium, and Tantalum Single Crystals
,”
Phys. Status Solidi A
,
28
(
2
), pp.
591
602
.
43.
Grena
,
R.
,
Celino
,
M.
, and
Tarquini
,
P.
,
2011
, “
DFT Study of Interstitial Hydrogen in Tantalum Lattice
,”
Int. J. Hydrog. Energy
,
36
(
21
), pp.
13858
13865
.
44.
Dai
,
S.
,
Xiang
,
Y.
, and
Srolovitz
,
D. J.
,
2014
, “
Atomistic, Generalized Peierls–Nabarro and Analytical Models for (111) Twist Boundaries in Al, Cu and Ni for All Twist Angles
,”
Acta Mater.
,
69
, pp.
162
174
.
45.
Devincre
,
B.
,
1995
, “
Three Dimensional Stress Field Expressions for Straight Dislocation Segments
,”
Solid State Commun.
,
93
(
11
), pp.
875
878
.
46.
Vitek
,
V.
,
1998
, “
Atomic Structure of Dislocations in Intermetallics With Close Packed Structures: A Comparative Study
,”
Intermetallics.
,
6
(
7–8
), pp.
579
585
.
47.
Joós
,
B.
, and
Duesbery
,
M. S.
,
1997
, “
The Peierls Stress of Dislocations: An Analytic Formula
,”
Phys. Rev. Lett.
,
78
(
2
), pp.
266
269
.
48.
Joós
,
B.
,
Ren
,
Q.
, and
Duesbery
,
M. S.
,
1994
, “
Peierls-Nabarro Model of Dislocations in Silicon With Generalized Stacking-Fault Restoring Forces
,”
Phys. Rev. B
,
50
(
9
), pp.
5890
5898
.
49.
Barnoush
,
A.
, and
Vehoff
,
H.
,
2008
, “
In Situ Electrochemical Nanoindentation: A Technique for Local Examination of Hydrogen Embrittlement
,”
Corros. Sci.
,
50
(
1
), pp.
259
267
.
50.
Wriedt
,
H. A.
, and
Oriani
,
R. A.
,
1974
, “
Effect of Hydrogen on Young’s Modulus of Ta, Nb, and V
,”
Scr. Mater.
,
8
(
3
), pp.
203
208
.
51.
Hachet
,
G.
,
Metsue
,
A.
,
Oudriss
,
A.
, and
Feaugas
,
X.
,
2018
, “
Influence of Hydrogen on the Elastic Properties of Nickel Single Crystal: A Numerical and Experimental Investigation
,”
Acta Mater.
,
148
, pp.
280
288
.
52.
Magerl
,
A.
,
Berre
,
B.
, and
Alefeld
,
G.
,
1976
, “
Changes of the Elastic Constants of V, Nb, and Ta by Hydrogen and Deuterium
,”
Phys. Status Solidi. (A)
,
36
(
1
), pp.
161
171
.
53.
Wen
,
M.
,
Barnoush
,
A.
, and
Yokogawa
,
K.
,
2011
, “
Calculation of All Cubic Single-Crystal Elastic Constants From Single Atomistic Simulation: Hydrogen Effect and Elastic Constants of Nickel
,”
Comput. Phys. Commun.
,
182
(
8
), pp.
1621
1625
.
54.
Spivak
,
L. V.
, and
Lunarska
,
E. A.
,
2006
, “
The Effect of Hydrogen on the Shear Modulus of Polycrystalline Aluminum
,”
Tech. Phys. Lett.
,
32
(
1
), pp.
55
57
.
55.
Senkov
,
O. N.
,
Dubois
,
M.
, and
Jonas
,
J. J.
,
1996
, “
Elastic Moduli of Titanium-Hydrogen Alloys in the Temperature Range 20 °C to 1100 °C
,”
Metall. Mater. Trans. A.
,
27
(
12
), pp.
3963
3970
.
56.
Senkov
,
O. N.
,
Chakoumakos
,
B. C.
,
Jonas
,
J. J.
, and
Froes
,
F. H.
,
2001
, “
Effect of Temperature and Hydrogen Concentration on the Lattice Parameter of Beta Titanium
,”
Mater. Res. Bull.
,
36
(
7–8
), pp.
1431
1440
.
57.
Wang
,
Z.
,
Shi
,
X.
,
Yang
,
X.-S.
,
Liu
,
Z.
,
Shi
,
S.-Q.
, and
Ma
,
X.
,
2020
, “
The Effects of Hydrogen Distribution on the Elastic Properties and Hydrogen-Induced Hardening and Softening of α-Fe
,”
Appl. Sci.
,
10
(
24
), p.
8958
.
58.
Barnoush
,
A.
, and
Vehoff
,
H.
,
2010
, “
Recent Developments in the Study of Hydrogen Embrittlement: Hydrogen Effect on Dislocation Nucleation
,”
Acta Mater.
,
58
(
16
), pp.
5274
5285
.
59.
Psiachos
,
D.
,
Hammerschmidt
,
T.
, and
Drautz
,
R.
,
2011
, “
Ab Initio Study of the Modification of Elastic Properties of α-Iron by Hydrostatic Strain and by Hydrogen Interstitials
,”
Acta Mater.
,
59
(
11
), pp.
4255
4263
.
60.
Kresse
,
G.
, and
Hafner
,
J.
,
1994
, “
Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium
,”
Phys. Rev. B
,
49
(
20
), pp.
14251
14269
.
61.
Kresse
,
G.
, and
Furthmüller
,
J.
,
1996
, “
Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis set
,”
Comput. Mater. Sci.
,
6
(
1
), pp.
15
50
.
62.
Kresse
,
G.
, and
Joubert
,
D.
,
1999
, “
From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method
,”
Phys. Rev. B.
,
59
(
3
), pp.
1758
1775
.
63.
Ramachandran
,
A.
,
Zhuang
,
H.
, and
Lackner
,
K. S.
,
2020
, “
Probing the Interactions Between Interstitial Hydrogen Atoms in Niobium Through Density Functional Theory Calculations
,”
Mater. Today Commun.
,
25
, p.
101415
.
64.
Pryde
,
J. A.
, and
Titcomb
,
C. G.
,
1969
, “
Solution of Hydrogen in Niobium
,”
Trans. Faraday Soc.
,
65
, pp.
2758
2765
.
65.
San-Martin
,
A.
, and
Manchester
,
F. D.
,
1987
, “
The H−Ti (Hydrogen-Titanium) System
,”
Bull. Alloy Phase Diagr.
,
8
(
1
), pp.
30
42
.
66.
Zuzek
,
E.
,
Abriata
,
J. P.
,
San-Martin
,
A.
, and
Manchester
,
F. D.
,
1990
, “
The H-Zr (Hydrogen-Zirconium) System
,”
Bull. Alloy Phase Diagr.
,
11
(
4
), pp.
385
395
.
67.
Zaw
,
A. K.
,
Chernov
,
I. I.
,
Staltsov
,
M. S.
,
Kalin
,
B. A.
, and
Efimov
,
V. S.
,
2015
, “
Hydrogen Retention by Vanadium-Titanium Alloys
,”
Inorg. Mater. Appl. Res.
,
6
(
2
), pp.
138
142
.
68.
Yamanaka
,
S.
,
Miyake
,
M.
, and
Katsura
,
M.
,
1997
, “
Study on the Hydrogen Solubility in Zirconium Alloys
,”
J. Nucl. Mater.
,
247
, pp.
315
321
.
69.
Sugimoto
,
H.
, and
Fukai
,
Y.
,
1992
, “
Solubility of Hydrogen in Metals Under High Hydrogen Pressures: Thermodynamical Calculations
,”
Acta Metall. Mater.
,
40
(
9
), pp.
2327
2336
.
70.
Fukai
,
Y.
, and
Sugimoto
,
H.
,
1983
, “
Enhanced Solubility of Hydrogen in Metals Under High Pressure: Thermodynamical Calculation
,”
Trans. Jpn. Inst. Met.
,
24
(
11
), pp.
733
740
.
71.
San-Martin
,
A.
, and
Manchester
,
F. D.
,
1992
, “
The Al–H (Aluminum-Hydrogen) System
,”
J. Phase Equilib.
,
13
(
1
), pp.
17
21
.
72.
Wayman
,
M. L.
, and
Weatherly
,
G. C.
,
1989
, “
The H−Ni (Hydrogen-Nickel) System
,”
Bull. Alloy Phase Diagr.
,
10
(
5
), pp.
569
580
.
73.
Movchan
,
D. N.
,
Teus
,
S. M.
,
Mogilny
,
G. S.
, and
Gavriljuk
,
V. G.
,
2013
, “
Hydrogen in Nickel: Hydride or Miscibility Gap?
,” http://dspace.nbuv.gov.ua/xmlui/handle/123456789/104132, Accessed May 16, 2022.
74.
Teus
,
S. M.
, and
Gavriljuk
,
V. G.
,
2018
, “
Electron Structure and Thermodynamics of Solid Solutions in Ni–H System
,”
Mater. Sci. Eng.
,
2
, pp.
101
109
.
75.
Antonov
,
V.
,
Belash
,
I.
, and
Ponyatovskii
,
E.
,
1977
, “
TP Phase Diagrams of the Ni–D and Ni–H Systems at Temperatures to 375 C and Pressures to 20 kbar
,”
Dokl. Akad. Nauk SSSR
,
233
(
6
), pp.
1114
1117
.
76.
Jiang
,
D. E.
, and
Carter
,
E. A.
,
2004
, “
Diffusion of Interstitial Hydrogen Into and Through bcc Fe From First Principles
,”
Phys. Rev. B
,
70
(
6
), p.
064102
.
77.
Sun
,
L.
,
Xiao
,
W.
,
Huang
,
S.
,
Wang
,
J.
, and
Wang
,
L.
,
2018
, “
Improving the Mechanical Processing of Titanium by Hydrogen Doping: A First-Principles Study
,”
Int. J. Hydrog. Energy
,
43
(
13
), pp.
6756
6764
.
78.
Weck
,
P. F.
,
Kim
,
E.
,
Tikare
,
V.
, and
Mitchell
,
J. A.
,
2015
, “
Mechanical Properties of Zirconium Alloys and Zirconium Hydrides Predicted From Density Functional Perturbation Theory
,”
Dalton Trans.
,
44
(
43
), pp.
18769
18779
.
79.
Kamm
,
G. N.
, and
Alers
,
G. A.
,
1964
, “
Low-Temperature Elastic Moduli of Aluminum
,”
J. Appl. Phys.
,
35
(
2
), pp.
327
330
.
80.
Simmons
,
G.
,
1965
,
Single Crystal Elastic Constants and Calculated Aggregate Properties
,
Southern Methodist University
,
Dallas, TX
, pp.
36
151
.
81.
Rayne
,
J. A.
, and
Chandrasekhar
,
B. S.
,
1961
, “
Elastic Constants of Iron From 4.2 to 300 K
,”
Phys. Rev.
,
122
(
6
), pp.
1714
1716
.
82.
Carroll
,
K. J.
,
1965
, “
Elastic Constants of Niobium From 4.2 deg to 300 degK
,”
J. Appl. Phys.
,
36
(
11
), pp.
3689
3690
.
83.
Fisher
,
E. S.
, and
Renken
,
C. J.
,
1964
, “
Single-Crystal Elastic Moduli and the hcp—bcc Transformation in Ti, Zr, and Hf
,”
Phys. Rev.
,
135
(
2A
), pp.
A482
A494
.
84.
Jamal
,
M.
,
Jalali Asadabadi
,
S.
,
Ahmad
,
I.
, and
Rahnamaye Aliabad
,
H. A.
,
2014
, “
Elastic Constants of Cubic Crystals
,”
Comput. Mater. Sci.
,
95
, pp.
592
599
.
85.
Fellinger
,
M. R.
,
Hector
,
L. G.
, and
Trinkle
,
D. R.
,
2017
, “
Ab Initio Calculations of the Lattice Parameter and Elastic Stiffness Coefficients of bcc Fe With Solutes
,”
Comput. Mater. Sci.
,
126
, pp.
503
513
.
86.
Ikehata
,
H.
,
Nagasako
,
N.
,
Furuta
,
T.
,
Fukumoto
,
A.
,
Miwa
,
K.
, and
Saito
,
T.
,
2004
, “
First-Principles Calculations for Development of Low Elastic Modulus Ti Alloys
,”
Phys. Rev. B
,
70
(
17
), p.
174113
.
87.
Colonna
,
F.
, and
Elsässer
,
C.
,
2017
, “
First Principles DFT Study of Interstitial Hydrogen and Oxygen Atoms in the MAX Phase Ti 2 AlN
,”
RSC Adv.
,
7
(
60
), pp.
37852
37857
.
88.
Kartamyshev
,
A. I.
,
Vo
,
D. D.
, and
Lipnitskii
,
A. G.
,
2016
, “
The Interaction Between Light Impurities and Vacancies in Titanium and Aluminum Metals: A DFT Study
,”
St. Petersburg Math. J.
,
2
(
2
), pp.
96
102
.
89.
Connétable
,
D.
,
Wang
,
Y.
, and
Tanguy
,
D.
,
2014
, “
Segregation of Hydrogen to Defects in Nickel Using First-Principles Calculations: The Case of Self-Interstitials and Cavities
,”
J. Alloys Compd.
,
614
, pp.
211
220
.
90.
Di Stefano
,
D.
,
Mrovec
,
M.
, and
Elsässer
,
C.
,
2015
, “
First-Principles Investigation of Quantum Mechanical Effects on the Diffusion of Hydrogen in Iron and Nickel
,”
Phys. Rev. B.
,
92
(
22
), p.
224301
.
91.
Aboud
,
S.
, and
Wilcox
,
J.
,
2010
, “
A Density Functional Theory Study of the Charge State of Hydrogen in Metal Hydrides
,”
J. Phys. Chem. C.
,
114
(
24
), pp.
10978
10985
.
92.
Poletaev
,
D. O.
,
Aksyonov
,
D. A.
,
Vo
,
D. D.
, and
Lipnitskii
,
A. G.
,
2016
, “
Hydrogen Solubility in hcp Titanium With the Account of Vacancy Complexes and Hydrides: A DFT Study
,”
Comput. Mater. Sci.
,
114
, pp.
199
208
.
93.
Udagawa
,
Y.
,
Yamaguchi
,
M.
,
Abe
,
H.
,
Sekimura
,
N.
, and
Fuketa
,
T.
,
2010
, “
Ab Initio Study on Plane Defects in Zirconium–Hydrogen Solid Solution and Zirconium Hydride
,”
Acta Mater.
,
58
(
11
), pp.
3927
3938
.
94.
Mouhat
,
F.
, and
Coudert
,
F.-X.
,
2014
, “
Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems
,”
Phys. Rev. B.
,
90
(
22
), p.
224104
.
95.
Gadijak
,
G.
,
Karpushin
,
A.
,
Korolenko
,
I.
,
Morokov
,
Y.
,
Sorokin
,
A.
, and
Tomasek
,
M.
,
1984
, “
Adsorption of Hydrogen on Si(111). Comparison of the Generalized Bethe Lattice and Recursion Methods
,”
Sov. Phys. Semicond.
,
18
, pp.
638
641
.
96.
Ravindran
,
P.
, and
Asokamani
,
R.
,
1997
, “
Correlation Between Electronic Structure, Mechanical Properties and Phase Stability in Intermetallic Compounds
,”
Bull. Mater. Sci.
,
20
(
4
), pp.
613
622
.
97.
Becke
,
A. D.
, and
Edgecombe
,
K. E.
,
1990
, “
A Simple Measure of Electron Localization in Atomic and Molecular Systems
,”
J. Chem. Phys.
,
92
(
9
), pp.
5397
5403
.
98.
Garg
,
P.
,
Adlakha
,
I.
, and
Solanki
,
K. N.
,
2018
, “
Effect of Solutes on Ideal Shear Resistance and Electronic Properties of Magnesium: A First-Principles Study
,”
Acta Mater.
,
153
, pp.
327
335
.
99.
Psiachos
,
D.
,
Hammerschmidt
,
T.
, and
Drautz
,
R.
,
2011
, “
Ab Initio Study of the Modification of Elastic Properties of α-Iron by Hydrostatic Strain and by Hydrogen Interstitials
,”
Acta Mater.
,
59
(
11
), pp.
4255
4263
.
100.
Fellinger
,
M. R.
,
Hector
,
L. G.
, and
Trinkle
,
D. R.
,
2017
, “
Ab Initio Calculations of the Lattice Parameter and Elastic Stiffness Coefficients of bcc Fe With Solutes
,”
Comput. Mater. Sci.
,
126
, pp.
503
513
.
101.
Zhang
,
Q.
,
Tian
,
Y.
,
Liu
,
S.
,
Yang
,
P.
, and
Li
,
Y.
,
2020
, “
First-Principles Study of the Elastic Properties of Nickel Sulfide Minerals Under High Pressure
,”
Minerals
,
10
(
9
), p.
737
.
102.
Healy
,
D.
,
Timms
,
N. E.
, and
Pearce
,
M. A.
,
2020
, “
The Variation and Visualisation of Elastic Anisotropy in Rock-Forming Minerals
,”
Solid Earth
,
11
(
2
), pp.
259
286
.
You do not currently have access to this content.