Abstract

This work investigates the differences in mechanical and thermal properties of polylactic acid (PLA)/lignin biocomposites made of four different unmodified organosolv lignin materials, three of which were extracted from different woody biomass (maple, oak, and pine) in-house, and one sourced commercially. Filaments made from blends of 30 wt% and 40 wt% of the in-house lignin and the commercially sourced lignin as fillers in PLA were used to 3D-print experimental test samples using fused filament fabrication (FFF) process. Statistically significant differences were observed in the mechanical properties based on tension testing and Izod impact testing, while differences in thermal properties based on differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were less significant. Test samples with 30 wt% lignin had tensile strengths that were higher than those of 40 wt% lignin. Among the three in-house extracted lignin from the woody biomass resources, maple-based composites consistently yielded the highest tensile strengths while oak-based materials yielded the highest stiffness in tension testing and the most stability in impact resistance. The pine-based materials showed the most decline in strengths between 30 wt% and 40 wt% lignin loadings. The commercially obtained lignin at 30 wt% and pine-based lignin at 40 wt% yielded much higher percent elongations at failure than all other materials. This study demonstrates the influence of lignin biomass resources and their concentrations on the properties and performances of 3D printed specimens.

References

1.
Yoo
,
C. G.
, and
Ragauskas
,
A. J.
,
2021
,
Lignin Utilization Strategies: From Processing to Applications
,
American Chemical Society
.
2.
Watkins
,
D.
,
Nuruddin
,
M.
,
Hosur
,
M.
,
Tcherbi-Narteh
,
A.
, and
Jeelani
,
S.
,
2015
, “
Extraction and Characterization of Lignin From Different Biomass Resources
,”
J. Mater. Res. Technol.
,
4
(
1
), pp.
26
32
.
3.
Yu
,
O.
, and
Kim
,
K. H.
,
2020
, “
Lignin to Materials: A Focused Review on Recent Novel Lignin Applications
,”
Appl. Sci.
,
10
(
13
), p.
4626
.
4.
Bajwa
,
D. S.
,
Pourhashem
,
G.
,
Ullah
,
A. H.
, and
Bajwa
,
S. G.
,
2019
, “
A Concise Review of Current Lignin Production, Applications, Products and Their Environmental Impact
,”
Ind. Crops Prod.
,
139
, p.
111526
.
5.
Mousavioun
,
P.
, and
Doherty
,
W. O.
,
2010
, “
Chemical and Thermal Properties of Fractionated Bagasse Soda Lignin
,”
Ind. Crops Prod.
,
31
(
1
), pp.
52
58
.
6.
Košíková
,
B.
,
Gregorova
,
A.
,
Osvald
,
A.
, and
Krajčovičová
,
J.
,
2007
, “
Role of Lignin Filler in Stabilization of Natural Rubber–Based Composites
,”
J. Appl. Polym. Sci.
,
103
(
2
), pp.
1226
1231
.
7.
Bula
,
K.
,
Klapiszewski
,
Ł
, and
Jesionowski
,
T.
,
2015
, “
A Novel Functional Silica/Lignin Hybrid Material as a Potential Bio-Based Polypropylene Filler
,”
Polym. Compos.
,
36
(
5
), pp.
913
922
.
8.
Baumberger
,
S.
,
Lapierre
,
C.
,
Monties
,
B.
, and
Della Valle
,
G.
,
1998
, “
Use of Kraft Lignin as Filler for Starch Films
,”
Polym. Degrad. Stab.
,
59
(
1–3
), pp.
273
277
.
9.
Toriz
,
G.
,
Denes
,
F.
, and
Young
,
R. A.
,
2002
, “
Lignin-Polypropylene Composites. Part 1: Composites From Unmodified Lignin and Polypropylene
,”
Polym. Compos.
,
23
(
5
), pp.
806
813
.
10.
Zhang
,
C.
,
Wu
,
H.
, and
Kessler
,
M. R.
,
2015
, “
High Bio-Content Polyurethane Composites With Urethane Modified Lignin as Filler
,”
Polymer
,
69
, pp.
52
57
.
11.
Hilburg
,
S. L.
,
Elder
,
A. N.
,
Chung
,
H.
,
Ferebee
,
R. L.
,
Bockstaller
,
M. R.
, and
Washburn
,
N. R.
,
2014
, “
A Universal Route Towards Thermoplastic Lignin Composites With Improved Mechanical Properties
,”
Polymer
,
55
(
4
), pp.
995
1003
.
12.
Averous
,
L.
, and
Le Digabel
,
F.
,
2006
, “
Properties of Biocomposites Based on Lignocellulosic Fillers
,”
Carbohydr. Polym.
,
66
(
4
), pp.
480
493
.
13.
Rahman
,
M. A.
,
De Santis
,
D.
,
Spagnoli
,
G.
,
Ramorino
,
G.
,
Penco
,
M.
,
Phuong
,
V. T.
, and
Lazzeri
,
A.
,
2013
, “
Biocomposites Based on Lignin and Plasticized Poly (L-Lactic Acid)
,”
J. Appl. Polym. Sci.
,
129
(
1
), pp.
202
214
.
14.
Le Digabel
,
F.
, and
Avérous
,
L.
,
2006
, “
Effects of Lignin Content on the Properties of Lignocellulose-Based Biocomposites
,”
Carbohydr. Polym.
,
66
(
4
), pp.
537
545
.
15.
Sahoo
,
S.
,
Misra
,
M.
, and
Mohanty
,
A. K.
,
2014
, “
Biocomposites From Switchgrass and Lignin Hybrid and Poly (Butylene Succinate) Bioplastic: Studies on Reactive Compatibilization and Performance Evaluation
,”
Macromol. Mater. Eng.
,
299
(
2
), pp.
178
189
.
16.
Feng
,
X.
,
Yang
,
Z.
,
Chmely
,
S.
,
Wang
,
Q.
,
Wang
,
S.
, and
Xie
,
Y.
,
2017
, “
Lignin-Coated Cellulose Nanocrystal Filled Methacrylate Composites Prepared via 3D Stereolithography Printing: Mechanical Reinforcement and Thermal Stabilization
,”
Carbohydr. Polym.
,
169
, pp.
272
281
.
17.
Sutton
,
J. T.
,
Rajan
,
K.
,
Harper
,
D. P.
, and
Chmely
,
S. C.
,
2018
, “
Lignin-Containing Photoactive Resins for 3D Printing by Stereolithography
,”
ACS Appl. Mater. Interfaces
,
10
(
42
), pp.
36456
36463
.
18.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B: Eng.
,
143
, pp.
172
196
.
19.
Ajdary
,
R.
,
Kretzschmar
,
N.
,
Baniasadi
,
H.
,
Trifol
,
J.
,
Seppälä
,
J. V.
,
Partanen
,
J.
, and
Rojas
,
O. J.
,
2021
, “
Selective Laser Sintering of Lignin-Based Composites
,”
ACS Sustainable Chem. Eng.
,
9
(
7
), pp.
2727
2735
.
20.
Oksman
,
K.
,
Skrifvars
,
M.
, and
Selin
,
J. F.
,
2003
, “
Natural Fibres as Reinforcement in Polylactic Acid (PLA) Composites
,”
Compos. Sci. Technol.
,
63
(
9
), pp.
1317
1324
.
21.
Iwatake
,
A.
,
Nogi
,
M.
, and
Yano
,
H.
,
2008
, “
Cellulose Nanofiber-Reinforced Polylactic Acid
,”
Compos. Sci. Technol.
,
68
(
9
), pp.
2103
2106
.
22.
Huda
,
M. S.
,
Drzal
,
L. T.
,
Mohanty
,
A. K.
, and
Misra
,
M.
,
2008
, “
Effect of Fiber Surface-Treatments on the Properties of Laminated Biocomposites From Poly (Lactic Acid) (PLA) and Kenaf Fibers
,”
Compos. Sci. Technol.
,
68
(
2
), pp.
424
432
.
23.
Tokoro
,
R.
,
Vu
,
D. M.
,
Okubo
,
K.
,
Tanaka
,
T.
,
Fujii
,
T.
, and
Fujiura
,
T.
,
2008
, “
How to Improve Mechanical Properties of Polylactic Acid With Bamboo Fibers
,”
J. Mater. Sci.
,
43
(
2
), pp.
775
787
.
24.
Dong
,
Y.
,
Ghataura
,
A.
,
Takagi
,
H.
,
Haroosh
,
H. J.
,
Nakagaito
,
A. N.
, and
Lau
,
K. T.
,
2014
, “
Polylactic Acid (PLA) Biocomposites Reinforced With Coir Fibres: Evaluation of Mechanical Performance and Multifunctional Properties
,”
Compos. Part A: Appl. Sci. Manuf.
,
63
, pp.
76
84
.
25.
Li
,
N.
,
Li
,
Y.
, and
Liu
,
S.
,
2016
, “
Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing
,”
J. Mater. Process. Technol.
,
238
, pp.
218
225
.
26.
Yu
,
T.
,
Li
,
Y.
, and
Ren
,
J.
,
2009
, “
Preparation and Properties of Short Natural Fiber Reinforced Poly (Lactic Acid) Composites
,”
Trans. Nonferrous Met. Soc. China
,
19
(
3
), pp.
s651
s655
.
27.
Gkartzou
,
E.
,
Koumoulos
,
E. P.
, and
Charitidis
,
C. A.
,
2017
, “
Production and 3D Printing Processing of Bio-Based Thermoplastic Filament
,”
Manuf. Rev.
,
4
(
1
), p.
1
.
28.
Mimini
,
V.
,
Sykacek
,
E.
,
Syed Hashim
,
S. N. A.
,
Holzweber
,
J.
,
Hettegger
,
H.
,
Fackler
,
K.
,
Potthast
,
A.
,
Mundigler
,
N.
, and
Rosenau
,
T.
,
2019
, “
Compatibility of Kraft Lignin, Organosolv Lignin and Lignosulfonate With PLA in 3D Printing
,”
J. Wood Chem. Technol.
,
39
(
1
), pp.
14
30
.
29.
Nguyen
,
N. A.
,
Bowland
,
C. C.
, and
Naskar
,
A. K.
,
2018
, “
A General Method to Improve 3D-Printability and Inter-Layer Adhesion in Lignin-Based Composites
,”
Appl. Mater. Today
,
12
, pp.
138
152
.
30.
Nguyen
,
N. A.
,
Barnes
,
S. H.
,
Bowland
,
C. C.
,
Meek
,
K. M.
,
Littrell
,
K. C.
,
Keum
,
J. K.
, and
Naskar
,
A. K.
,
2018
, “
A Path for Lignin Valorization via Additive Manufacturing of High-Performance Sustainable Composites With Enhanced 3D Printability
,”
Sci. Adv.
,
4
(
12
), p.
eaat4967
.
31.
Nguyen
,
N. A.
,
Bowland
,
C. C.
, and
Naskar
,
A. K.
,
2018
, “
Mechanical, Thermal, Morphological, and Rheological Characteristics of High-Performance 3D-Printing Lignin-Based Composites for Additive Manufacturing Applications
,”
Data Brief
,
19
, pp.
936
950
.
32.
Tanase-Opedal
,
M.
,
Espinosa
,
E.
,
Rodríguez
,
A.
, and
Chinga-Carrasco
,
G.
,
2019
, “
Lignin: A Biopolymer From Forestry Biomass for Biocomposites and 3D Printing
,”
Materials
,
12
(
18
), p.
3006
.
33.
Hong
,
S. H.
,
Park
,
J. H.
,
Kim
,
O. Y.
, and
Hwang
,
S. H.
,
2021
, “
Preparation of Chemically Modified Lignin-Reinforced PLA Biocomposites and Their 3D Printing Performance
,”
Polymers
,
13
(
4
), p.
667
.
34.
Bhagia
,
S.
,
Bornani
,
K.
,
Agarwal
,
R.
,
Satlewal
,
A.
,
Ďurkovič
,
J.
,
Lagaňa
,
R.
, and
Ragauskas
,
A. J.
,
2021
, “
Critical Review of FDM 3D Printing of PLA Biocomposites Filled With Biomass Resources, Characterization, Biodegradability, Upcycling and Opportunities for Biorefineries
,”
Appl. Mater. Today
,
24
, p.
101078
.
35.
Kline
,
L. M.
,
Hayes
,
D. G.
,
Womac
,
A. R.
, and
Labbe
,
N.
,
2010
, “
Simplified Determination of Lignin Content in Hard and Soft Woods via UV-Spectrophotometric Analysis of Biomass Dissolved in Ionic Liquids
,”
BioResources
,
5
(
3
), pp.
1366
1383
.
36.
Boerjan
,
W.
,
Ralph
,
J.
, and
Baucher
,
M.
,
2003
, “
Lignin Biosynthesis
,”
Annu. Rev. Plant Biol.
,
54
(
1
), pp.
519
546
.
37.
Kong
,
F.
,
Wang
,
S.
,
Price
,
J. T.
,
Konduri
,
M. K. R.
, and
Fatehi
,
P.
,
2015
, “
Water Soluble Kraft Lignin-Acrylic Acid Copolymer: Synthesis and Characterization
,”
Green Chem.
,
17
(
8
), pp.
4355
4366
.
38.
Hambardzumyan
,
A.
,
Foulon
,
L.
,
Chabbert
,
B.
, and
Aguiébéghin
,
V.
,
2012
, “
Natural Organic UV-Absorbent Coatings Based on Cellulose and Lignin: Designed Effects on Spectroscopic Properties
,”
Biomacromolecules
,
13
(
12
), pp.
4081
4088
.
39.
Zong
,
E.
,
Liu
,
X.
,
Liu
,
L.
,
Wang
,
J.
,
Song
,
P.
,
Ma
,
Z.
,
Ding
,
J.
, and
Fu
,
S.
,
2018
, “
Graft Polymerization of Acrylic Monomers Onto Lignin With CaCl2–H2O2 as Initiator: Preparation, Mechanism, Characterization, and Application in Poly (Lactic Acid)
,”
ACS Sustainable Chem. Eng.
,
6
(
1
), pp.
337
348
.
40.
Callister
,
W. D.
,
Rethwisch
,
D. G.
,
Blicblau
,
A.
,
Bruggeman
,
K.
,
Cortie
,
M.
,
Long
,
J.
,
Hart
,
J.
, et al
,
2021
,
Materials Science and Engineering: An Introduction
,
Wiley
,
New York
.
41.
Ahn
,
S.
,
Montero
,
M.
,
Odell
,
D.
,
Roundy
,
S.
, and
Wright
,
P. K.
,
2002
, “
Anisotropic Material Properties of Fused Deposition Modeling ABS
,”
Rapid Prototyping J.
,
8
(
4
), pp.
248
257
.
42.
Garzon-Hernandez
,
S.
,
Garcia-Gonzalez
,
D.
,
Jérusalem
,
A.
, and
Arias
,
A.
,
2020
, “
Design of FDM 3D Printed Polymers: An Experimental-Modelling Methodology for the Prediction of Mechanical Properties
,”
Mater. Des.
,
188
, p.
108414
.
43.
Rodríguez-Panes
,
A.
,
Claver
,
J.
, and
Camacho
,
A.
,
2018
, “
The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis
,”
Materials
,
11
(
8
), p.
1333
.
44.
Ligon
,
S. C.
,
Liska
,
R.
,
Stampfl
,
J.
,
Gurr
,
M.
, and
Mülhaupt
,
R.
,
2017
, “
Polymers for 3D Printing and Customized Additive Manufacturing
,”
Chem. Rev.
,
117
(
15
), pp.
10212
10290
.
45.
Lourenço
,
A.
, and
Pereira
,
H.
,
2018
, “
Compositional Variability of Lignin in Biomass
,”
Lignin—Trends Appl.
,
10
, pp.
65
98
.
You do not currently have access to this content.