Abstract

Three-dimensional (3D) reconstruction and finite element method are combined to study the damage behavior of aluminum alloy resistance spot-welded joints. Fatigue damage of spot-welded joints under different cyclic loading stages was obtained by X-ray microcomputed tomography (X-ray micro CT). Then, avizo software was used to reconstruct the scanned data of joints with different damage degrees, and the distribution and variation of defects in the joints are obtained. On this basis, 3D finite element damage models were established. Finite element calculations were carried out to analyze the fatigue damage of spot-welded joints by adopting the effective elastic modulus as the damage parameter. The results show that the effective elastic modulus is consistent with the experimental results. The method of combining 3D reconstruction with the finite element method can be used to evaluate the internal damage of spot-welded joints and provide theoretical basis for the prediction of fatigue life.

References

1.
Vishnuvardhan
,
S.
,
Raghava
,
G.
,
Saravanan
,
M.
, and
Gandhi
,
P.
,
2016
, “
Fatigue Life Evaluation of Fillet Welded Cruciform Joints With Load-Carrying Welds
,”
Trans. Indian Inst. Met.
,
69
(
2
), pp.
585
589
. 10.1007/s12666-015-0822-3
2.
Schjødt-Thomsen
,
J.
, and
Andreasen
,
J. H.
,
2018
, “
Low Cycle Fatigue Behaviour of Welded T-Joints in High Strength Steel
,”
Eng. Fail. Anal.
,
93
, pp.
38
43
. 10.1016/j.engfailanal.2018.06.026
3.
Vaško
,
M.
,
Blatnický
,
M.
,
Kopas
,
P.
, and
Sága
,
M.
,
2017
, “
Research of Weld Joint Fatigue Life of the AlMgSi07.F25 Aluminium Alloy Under Bending-Torsion Cyclic Loading
,”
Metalurgija
,
56
(
1–2
), pp.
94
98
.
4.
Wei
,
G.
,
Yue
,
X.
,
Dang
,
Z.
, and
He
,
Y.
,
2017
, “
S-N and IEFM Combined Fatigue Life Analysis for Welded Structures
,”
Trans. China Weld. Inst.
,
38
(
2
), pp.
23
27
.
5.
Sistaninia
,
M.
, and
Niffenegger
,
M.
,
2014
, “
Prediction of Damage-Growth Based Fatigue Life of Polycrystalline Materials Using a Micro-Structural Modeling Approach
,”
Int. J. Fatigue
,
66
, pp.
118
126
. 10.1016/j.ijfatigue.2014.03.018
6.
Wu
,
G.
,
Li
,
D.
,
Su
,
X.
,
Peng
,
Y.
,
Shi
,
Y.
,
Huang
,
L.
,
Huang
,
S.
, and
Tang
,
W.
,
2017
, “
Experiment and Modeling on Fatigue of the DP780GI Spot Welded Joint
,”
Int. J. Fatigue
,
103
, pp.
73
85
. 10.1016/j.ijfatigue.2017.05.017
7.
Liu
,
H.
,
Yang
,
S.
,
Xie
,
C.
,
Zhang
,
Q.
, and
Cao
,
Y.
,
2018
, “
Mechanisms of Fatigue Crack Initiation and Propagation in 6005A CMT Welded Joint
,”
J. Alloys Compd.
,
741
, pp.
188
196
. 10.1016/j.jallcom.2017.12.374
8.
Beckmann
,
C.
,
Kennerknecht
,
T.
,
Preußner
,
J.
,
Farajian
,
M.
,
Luke
,
M.
, and
Hohe
,
J.
,
2018
, “
Micromechanical Investigation and Numerical Simulation of Fatigue Crack Formation in Welded Joints
,”
Eng. Fract. Mech.
,
198
, pp.
142
157
. 10.1016/j.engfracmech.2017.08.008
9.
Mu
,
P.
,
Nadot
,
Y.
,
Nadot-Martin
,
C.
,
Chabod
,
A.
,
Serrano-Munoz
,
I.
, and
Verdu
,
C.
,
2014
, “
Influence of Casting Defects on the Fatigue Behavior of Cast Aluminum AS7G06-T6
,”
Int. J. Fatigue
,
63
, pp.
97
109
. 10.1016/j.ijfatigue.2014.01.011
10.
Wu
,
S. C.
,
Yu
,
C.
,
Zhang
,
W. H.
,
Fu
,
Y. N.
, and
Helfen
,
L.
,
2015
, “
Porosity Induced Fatigue Damage of Laser Welded 7075-T6 Joints Investigated via Synchrotron X-Ray Microtomography
,”
Sci. Technol. Weld. Joining
,
20
(
1
), pp.
11
19
. 10.1179/1362171814Y.0000000249
11.
Yang
,
Z.
,
Kang
,
J.
, and
Wilkinson
,
D. S.
,
2015
, “
Characterization of Pore Defects and Fatigue Cracks in Die Cast AM60 Using 3D X-ray Computed Tomography
,”
Metall. Mater. Trans. B
,
46
(
4
), pp.
1576
1585
. 10.1007/s11663-015-0370-6
12.
Dezecot
,
S.
,
Buffiere
,
J.-Y.
,
Koster
,
A.
,
Maurel
,
V.
,
Szmytka
,
F.
,
Charkaluk
,
E.
,
Dahdah
,
N.
,
El Bartali
,
A.
,
Limodin
,
N.
, and
Witz
,
J.-F.
,
2016
, “
In Situ 3D Characterization of High Temperature Fatigue Damage Mechanisms in a Cast Aluminum Alloy Using Synchrotron X-ray Tomography
,”
Scr. Mater.
,
113
, pp.
254
258
. 10.1016/j.scriptamat.2015.11.017
13.
Luetje
,
M.
,
Wicke
,
M.
,
Bacaicoa
,
I.
,
Brueckner-Foit
,
A.
,
Geisert
,
A.
, and
Fehlbier
,
M.
,
2017
, “
3D Characterization of Fatigue Damage Mechanisms in a Cast Aluminum Alloy Using X-ray Tomography
,”
Int. J. Fatigue
,
103
, pp.
363
370
. 10.1016/j.ijfatigue.2017.06.020
14.
Liu
,
Y.
,
Kang
,
M.
,
Wu
,
Y.
,
Wang
,
M.
,
Gao
,
H.
, and
Wang
,
J.
,
2018
, “
Analysis of Microporosity-Dependent Fatigue Crack Behavior in Alloy 718 by Using Synchronic Radiation X-Ray CT and FEM
,”
Proceedings of the 9th International Symposium on Superalloy 718 and Derivatives: Energy, Aerospace, and Industrial Applications
,
Pittsburgh, PA
,
June 3–6
, The Minerals, Metals & Materials Series, pp.
389
404
.
15.
Le
,
V.-D.
,
Saintier
,
N.
,
Morel
,
F.
,
Bellett
,
D.
, and
Osmond
,
P.
,
2018
, “
Investigation of the Effect of Porosity on the High Cycle Fatigue Behaviour of Cast Al-Si Alloy by X-Ray Micro-Tomography
,”
Int. J. Fatigue
,
106
, pp.
24
37
. 10.1016/j.ijfatigue.2017.09.012
16.
Lorenzino
,
P.
,
Buffiere
,
J.-Y.
, and
Verdu
,
C.
,
2018
, “
3D Characterization of the Propagation of Small Fatigue Cracks in Steels With Different Forging Conditions
,”
Int. J. Fatigue
,
115
, pp.
2
10
. 10.1016/j.ijfatigue.2018.06.042
17.
Wang
,
L.
,
Li
,
P.
,
Wang
,
Z.
, and
Wang
,
R.
,
2015
, “
Three-dimensional Reconstruction Method Study of 2A12 Aluminum Alloy Fatigue Crack Based on Computed Tomography
,”
J. Mech. Eng.
,
51
(
24
), pp.
63
68
. 10.3901/JME.2015.24.063
18.
Carter
,
S. T.
,
Rotella
,
J.
,
Agyei
,
R. F.
,
Xiao
,
X.
, and
Sangid
,
M. D.
,
2018
, “
Measuring Fatigue Crack Deflections Via Cracking of Constituent Particles in AA7050 Via in Situ X-Ray Synchrotron-Based Micro-Tomography
,”
Int. J. Fatigue
,
116
, pp.
490
504
. 10.1016/j.ijfatigue.2018.07.005
19.
Wan
,
Q.
,
Zhao
,
H.
, and
Ge
,
J.
,
2015
, “
Effect of Micro-Porosities on Fatigue Behavior of Aluminum die Castings
,”
Chin. J. Nonferrous Met.
,
25
(
3
), pp.
568
574
.
20.
Sheridan
,
L.
,
Scott-Emuakpor
,
O. E.
,
George
,
T.
, and
Gockel
,
J. E.
,
2018
, “
Relating Porosity to Fatigue Failure in Additively Manufactured Alloy 718
,”
Mater. Sci. Eng. A
,
727
, pp.
170
176
. 10.1016/j.msea.2018.04.075
21.
Dixon
,
B.
,
Barter
,
S.
, and
Mazeika
,
R.
,
2018
, “
Quantification of the Fatigue Severity of Porosity in Aluminium Alloy 7050-T7451 Thick Plate
,”
Int. J. Fatigue
,
114
, pp.
217
225
. 10.1016/j.ijfatigue.2018.05.019
22.
Guezmil
,
M.
,
Bensalah
,
W.
,
Khalladi
,
A.
,
Elleuch
,
K.
, and
Depetris
,
M.
,
2015
, “
Friction Coefficient and Microhardness of Anodized Aluminum Alloys Under Different Elaboration Conditions
,”
Trans. Nonferrous Met. Soc. China
,
25
(
6
), pp.
1950
1960
. 10.1016/S1003-6326(15)63803-1
23.
Tang
,
J.
,
Hu
,
W.
,
Meng
,
Q.
,
Sun
,
L.
, and
Zhan
,
Z.
,
2017
, “
A Novel Two-Scale Damage Model for Fatigue Damage Analysis of Transition Region Between High- and Low-Cycle Fatigue
,”
Int. J. Fatigue
,
105
, pp.
208
218
. 10.1016/j.ijfatigue.2017.09.005
24.
Falkowska
,
A.
, and
Seweryn
,
A.
,
2018
, “
Fatigue Life of 316L Steel Sinters of Varying Porosity Under Conditions of Uniaxial Periodically Variable Loading at a Fixed Stress Amplitude
,”
Int. J. Fatigue
,
117
, pp.
496
510
. 10.1016/j.ijfatigue.2018.07.025
25.
Lemaitre
,
J.
, and
Desmorat
,
R.
,
2005
,
Engineering Damage Mechanics
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.