This study investigated the hydrogen embrittlement (HE) cracking behavior produced by local contact loading of high-strength steel. When a spherical impression was applied to a hydrogen-absorbed high-strength steel, HE induces contact fracture, where radial cracks are initiated and propagated from the indentation impression. The length of the radial crack was found to be dependent on the hydrogen content in the steel as well as the applied contact force. A combined experimental/computational investigation was conducted in order to clarify the mechanism of hydrogen-induced contact fracture. In the computation, crack propagation was simulated using a cohesive zone model (CZM) in finite element method (FEM), in order to elucidate stress criterion of the present HE crack. It was found that the normal tensile stress was developed around impression, and it initiated and propagated the HE crack. It was also revealed that the hydrogen content enhanced contact fracture damage, especially the resistance of crack propagation (i.e., threshold stress intensity factor, Kth). The findings may be useful for countermeasure of contact fracture coupled with hydrogen in high-strength steel. Such phenomenon is potentially experienced in various contact components in hydrogen environment.

References

1.
Louthan
,
M. R.
,
1983
, “
Strain Localization and Hydrogen Embrittlement
,”
Scr. Metall.
,
17
(
4
), pp.
451
454
.10.1016/0036-9748(83)90329-0
2.
Steigerwald
,
E. A.
,
Schaller
,
F. W.
, and
Troiano
,
A. R.
,
1960
, “
The Role of Stress in Hydrogen Induced Delayed Failure
,”
Trans. Metall. Soc. AIME
,
218
, pp.
832
841
.
3.
Oriani
,
R. A.
, and
Josephic
,
P. H.
,
1974
, “
Equilibrium Aspects of Hydrogen-Induced Cracking of Steels
,”
Acta Metall.
,
22
(
9
), pp.
1065
1074
.10.1016/0001-6160(74)90061-3
4.
Gangloff
,
R. P.
,
2003
,
Hydrogen Assisted Cracking of High Strength Alloys Milne I
,
R. O.
Ritchie
, and
B.
Karihaloo
, eds.,
Elsevier Science
,
New York
.
5.
Reddy
,
K. G.
,
Arumugam
,
S.
, and
Lakshman
,
T. S.
,
1992
, “
Hydrogen Embrittlement of Maraging Steel
,”
J. Mater. Sci.
,
27
(
19
), pp.
5159
5162
.10.1007/BF02403810
6.
Yonezu
,
A.
,
Arino
,
M.
,
Kondo
,
T.
,
Hirakata
,
H.
, and
Minoshima
,
K.
,
2010
, “
On Hydrogen-Induced Vickers Indentation Cracking in High-Strength Steel
,”
Mech. Res. Commun.
,
37
(
2
), pp.
230
234
.10.1016/j.mechrescom.2010.01.001
7.
Szost
,
B. A.
, and
Rivera-Diaz-del-Castillo
,
P. E. J.
,
2013
, “
Unveiling the Nature of Hydrogen Embrittlement in Bearing Steels Employing a New Technique
,”
Scr. Mater.
,
68
(
7
), pp.
467
470
.10.1016/j.scriptamat.2012.11.018
8.
Yonezu
,
A.
,
Hara
,
T.
,
Kondo
,
T.
,
Hirakata
,
H.
, and
Minoshima
,
K.
,
2012
, “
Evaluation of Threshold Stress Intensity Factor of Hydrogen Embrittlement Cracking by Indentation Testing
,”
Mater. Sci. Eng. A
,
531
, pp.
147
154
.10.1016/j.msea.2011.10.049
9.
Ciruna
,
J. A.
, and
Szieleit
,
H. J.
,
1973
, “
The Effect of Hydrogen on the Rolling Contact Fatigue Life of AISI 52100 and 440C Steel Balls
,”
Wear
,
24
(
1
), pp.
107
118
.10.1016/0043-1648(73)90207-X
10.
Tanaka
,
H.
,
Morofuji
,
T.
,
Enami
,
K.
,
Hashimoto
,
M.
, and
Enami
,
J.
,
2013
, “
Effect of Environmental Gas on Surface Initiated Rolling Contact Fatigue
,”
Tribol. Online
,
8
(
1
), pp.
90
96
.10.2474/trol.8.90
11.
Kubota
,
M.
,
Noyama
,
N.
,
Sakae
,
C.
, and
Kondo
,
Y.
,
2006
, “
Fretting Fatigue in Hydrogen Gas
,”
Tribol. Int.
,
39
(
10
), pp.
1241
1247
.10.1016/j.triboint.2006.02.014
12.
Chen
,
X.
,
2005
, “
Foreign Object Damage on the Leading Edge of a Thin Blade
,”
Mech. Mater.
,
37
(
4
), pp.
447
457
.10.1016/j.mechmat.2004.03.005
13.
Lawn
,
B. R.
,
1993
,
Fracture of Brittle Solids
,
Cambridge University Press
,
New York
.
14.
Boyer
,
H. E.
, and
Gall
,
T. L.
,
1985
,
Metals Handbook Desk
Edition
,
W. H.
Cubberly
, and
B. P.
Bardes
, eds.,
American Society for Metals
, Metals Park,
OH
.
15.
Gangloff
,
R. P.
, and
Wei
,
R. P.
,
1974
, “
Gaseous Hydrogen Assisted Crack Growth in 18 Nickel Maraging Steels
,”
Scr. Metall.
,
8
(
6
), pp.
661
668
.10.1016/0036-9748(74)90017-9
16.
Antlovich
,
S. D.
,
Risbeck
,
T. R.
,
Saxena
,
A.
, and
Kawabe
,
Y.
,
1980
, “
The Effect of Microstructure on the Fracture Toughness of 300 and 350 Grade Maraging Steels
,”
Eng. Fract. Mech.
,
13
(
4
), pp.
717
739
.10.1016/0013-7944(80)90004-1
17.
Tsay
,
L. W.
,
Hu
,
Y. F.
, and
Chen
,
C.
,
2005
, “
Embrittlement of T-200 Maraging Steel in a Hydrogen Sulfide Solution
,”
Corros. Sci.
,
47
(
4
), pp.
965
976
.10.1016/j.corsci.2004.06.017
18.
Tsay
,
L. W.
,
Lu
,
H. L.
, and
Chen
,
C.
,
2008
, “
The Effect of Grain Size and Aging on Hydrogen Embrittlement of a Maraging Steel
,”
Corros. Sci.
,
50
(
9
), pp.
2506
2511
.10.1016/j.corsci.2008.06.044
19.
Pao
,
P. S.
, and
Wei
,
R. P.
,
1977
, “
Hydrogen Assisted Crack Growth in 18Ni (300) Maraging Steel
,”
Scr. Metall.
,
11
(
6
), pp.
515
520
.10.1016/0036-9748(77)90170-3
20.
Cook
,
R. F.
, and
Pharr
,
G. M.
,
1990
, “
Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics
,”
J. Am. Ceram. Soc.
,
73
(
4
), pp.
787
817
.10.1111/j.1151-2916.1990.tb05119.x
21.
Evans
,
A. G.
, and
Wilshaw
,
T. R.
,
1976
, “
Quasi-Static Solid-Particle Damage in Brittle Solids—I. Observations, Analysis, and Implications
,”
Acta Metall.
,
24
(
10
), pp.
939
945
.10.1016/0001-6160(76)90042-0
22.
Chen
,
X.
,
Ogasawara
,
N.
,
Zhao
,
M.
, and
Chiba
,
N.
,
2007
, “
On the Uniqueness of Measuring Elastoplastic Properties From Indentation: The Indistinguishable Mystical Materials
,”
J. Mech. Phys. Solids
,
55
(
8
), pp.
1618
1660
.10.1016/j.jmps.2007.01.010
23.
Hal
,
B. A. E.
,
Peerlings
,
R. H. J.
,
Geers
,
M. G. D.
, and
Sluis
,
O.
,
2007
, “
Cohesive Zone Modeling for Structural Integrity Analysis of IC Interconnects
,”
Microelectron. Reliab.
,
47
(
8
), pp.
1251
1261
.10.1016/j.microrel.2006.08.017
24.
Xia
,
Z.
,
Curtin
,
W. A.
, and
Sheldon
,
B. W.
,
2004
, “
A New Method to Evaluate the Fracture Toughness of Thin Films
,”
Acta Mater.
,
52
(
12
), pp.
3507
3517
.10.1016/j.actamat.2004.04.004
25.
Olden
,
V.
,
Thaulow
,
C.
,
Johnsen
,
R.
,
Østby
,
E.
, and
Berstad
,
T.
,
2008
, “
Application of Hydrogen Influenced Cohesive Laws in the Prediction of Hydrogen Induced Stress Cracking in 25% Cr Duplex Stainless Steel
,”
Eng. Fract. Mech.
,
75
(
8
), pp.
2333
2351
.10.1016/j.engfracmech.2007.09.003
26.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1992
, “
The Relation Between Crack-Growth Resistance and Fracture Process Parameters in Elastic Plastic Solids
,”
J. Mech. Phys. Solids
,
40
(
6
), pp.
1377
1397
.10.1016/0022-5096(92)90020-3
27.
Lee
,
J. H.
,
Gao
,
Y. F.
,
Johanns
,
K. E.
, and
Pharr
,
G. M.
,
2012
, “
Cohesive Interface Simulations of Indentation Cracking as a Fracture Toughness Measurement Method for Brittle Materials
,”
Acta Mater.
,
60
(
15
), pp.
5448
5467
.10.1016/j.actamat.2012.07.011
28.
Yamaguchi
,
Y.
,
Nonaka
,
H.
, and
Yamakawa
,
K.
,
1997
, “
Effect of Hydrogen Content on Threshold Stress Intensity Factor in Carbon Steel in Hydrogen-Assisted Cracking Environments
,”
Corros. NACE
,
53
(
2
), pp.
147
155
.10.5006/1.3280452
29.
Sumitomo Metals,
1999
, “
High Strength High Toughness Stainless Steel HSL180
,”
Sumitomo Precision Products Co, Ltd.
, Amagasaki, Japan.
You do not currently have access to this content.