The present work deals with the high temperature flow behavior and the microstructure of the Al-Cu/Mg2Si metal matrix composite. Toward this end, a set of hot compression tests was performed in a wide range of temperature (573–773 K) and strain rate (0.001–0.1 s−1). The results indicated that the temperature and strain rate have a significant effect on the flow softening and hardening behavior of the material. The work hardening rate may be offset due to the occurrence of the restoration processes, the dynamic coarsening, and spheroidization of the second phase particles. In this regard, two phenomenological constitutive models, Johnson–Cook (JC) and Arrhenius-type equations, were employed to describe the high temperature deformation behavior of the composite. The JC equation diverged from experimental curves mainly in conditions which are far from its reference temperature and reference strain rate. This was justified considering the fact that JC model considers thermal softening, strain rate hardening, and strain hardening as three independent phenomena. In contrast, the Arrhenius-type model was more accurate in modeling of the flow behavior in wide range of temperature and strain rate. The minor deviation at some specified conditions was attributed to the negative strain rate sensitivity of the alloys at low temperature deformation regime.

References

1.
Mondal
,
D.
,
Das
,
S.
,
Suresh
,
K.
, and
Ramakrishnan
,
N.
,
2007
, “
Compressive Deformation Behaviour of Coarse SiC Particle Reinforced Composite: Effect of Age-Hardening and SiC Content
,”
Mater. Sci. Eng.: A
,
460–461
, pp.
550
560
.10.1016/j.msea.2007.03.001
2.
Mcwilliams
,
B.
,
Sano
,
T.
,
Yu
,
J.
,
Gordon
,
A.
, and
Yen
,
C.
,
2013
, “
Influence of Hot Rolling on the Deformation Behavior of Particle Reinforced Aluminum Metal Matrix Composite
,”
Mater. Sci. Eng.: A
,
577
, pp.
54
63
.10.1016/j.msea.2013.03.039
3.
Tham
,
L.
,
Gupta
,
M.
, and
Cheng
,
L.
,
2002
, “
Effect of Reinforcement Volume Fraction on the Evolution of Reinforcement Size During the Extrusion of Al-SiC Composites
,”
Mater. Sci. Eng.: A
,
326
(
2
), pp.
355
363
.10.1016/S0921-5093(01)01526-X
4.
Soltani
,
N.
,
Jafari Nodooshan
,
H.
,
Bahrami
,
A.
,
Pech-Canul
,
M.
,
Liu
,
W.
, and
Wu
,
G.
,
2014
, “
Effect of Hot Extrusion on Wear Properties of Al–15 wt.% Mg2Si In Situ Metal Matrix Composites
,”
Mater. Des.
,
53
, pp.
774
781
.10.1016/j.matdes.2013.07.084
5.
Emamy
,
M.
,
Khodadadi
,
M.
,
Honarbakhsh Raouf
,
A.
, and
Nasiri
,
N.
,
2013
, “
The Influence of Ni Addition and Hot-Extrusion on the Microstructure and Tensile Properties of Al–15% Mg2Si Composite
,”
Mater. Des.
,
46
, pp.
381
390
.10.1016/j.matdes.2012.10.005
6.
Lin
,
Y.
, and
Chen
,
X.-M.
,
2011
, “
A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working
,”
Mater. Des.
,
32
(
4
), pp.
1733
1759
.10.1016/j.matdes.2010.11.048
7.
Rusinek
,
A.
,
Rodríguez-Martínez
,
J. A.
, and
Arias
,
A.
,
2010
, “
A Thermo-Viscoplastic Constitutive Model for FCC Metals With Application to OFHC Copper
,”
Int. J. Mech. Sci.
,
52
(
2
), pp.
120
135
.10.1016/j.ijmecsci.2009.07.001
8.
Shin
,
H.
, and
Kim
,
J.-B.
,
2010
, “
A Phenomenological Constitutive Equation to Describe Various Flow Stress Behaviors of Materials in Wide Strain Rate and Temperature Regimes
,”
ASME J. Eng. Mater. Technol.
,
132
(
2
), p.
021009
.10.1115/1.4000225
9.
Lin
,
Y.
, and
Liu
,
G.
,
2010
, “
A New Mathematical Model for Predicting Flow Stress of Typical High-Strength Alloy Steel at Elevated High Temperature
,”
Comput. Mater. Sci.
,
48
(
1
), pp.
54
58
.10.1016/j.commatsci.2009.06.026
10.
Fields
,
D.
, and
Backofen
,
W.
,
1957
, “
Determination of Strain Hardening Characteristics by Torsion Testing
,”
Proceedings of the American Society for Testing and Materials
, Vol.
57
, pp.
1259
1272
.
11.
Molinari
,
A.
, and
Ravichandran
,
G.
,
2005
, “
Constitutive Modeling of High-Strain-Rate Deformation in Metals Based on the Evolution of an Effective Microstructural Length
,”
Mech. Mater.
,
37
(
7
), pp.
737
752
.10.1016/j.mechmat.2004.07.005
12.
Khan
,
A. S.
, and
Huang
,
S.
,
1992
, “
Experimental and Theoretical Study of Mechanical Behavior of 1100 Aluminum in the Strain Rate Range 10−5−104 s−1
,”
Int. J. Plast.
,
8
(
4
), pp.
397
424
.10.1016/0749-6419(92)90057-J
13.
Khan
,
A. S.
,
Zhang
,
H.
, and
Takacs
,
L.
,
2000
, “
Mechanical Response and Modeling of Fully Compacted Nanocrystalline Iron and Copper
,”
Int. J. Plast.
,
16
(
12
), pp.
1459
1476
.10.1016/S0749-6419(00)00023-1
14.
Khan
,
A. S.
,
Baig
,
M.
,
Choi
,
S.-H.
,
Yang
,
H.-S.
, and
Sun
,
X.
,
2012
, “
Quasi-Static and Dynamic Responses of Advanced High Strength Steels: Experiments and Modeling
,”
Int. J. Plast.
,
30
, pp.
1
17
.10.1016/j.ijplas.2011.08.004
15.
Khan
,
A. S.
,
Suh
,
Y. S.
,
Chen
,
X.
,
Takacs
,
L.
, and
Zhang
,
H.
,
2006
, “
Nanocrystalline Aluminum and Iron: Mechanical Behavior at Quasi-Static and High Strain Rates, and Constitutive Modeling
,”
Int. J. Plast.
,
22
(
2
), pp.
195
209
.10.1016/j.ijplas.2004.07.008
16.
Voce
,
E.
,
1948
, “
The Relationship Between Stress and Strain for Homogeneous Deformation
,”
J. Inst. Met.
,
74
, pp.
537
562
.
17.
Samantaray
,
D.
,
Mandal
,
S.
,
Borah
,
U.
,
Bhaduri
,
A.
, and
Sivaprasad
,
P.
,
2009
, “
A Thermo-Viscoplastic Constitutive Model to Predict Elevated-Temperature Flow Behaviour in a Titanium-Modified Austenitic Stainless Steel
,”
Mater. Sci. Eng.: A
,
526
(
1
), pp.
1
6
.10.1016/j.msea.2009.08.009
18.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
, Hague, The Netherlands, Apr. 19–21, Vol.
21
, pp.
541
547
.
19.
Zener
,
C.
, and
Hollomon
,
J.
,
2004
, “
Effect of Strain Rate Upon Plastic Flow of Steel
,”
J. Appl. Phys.
,
15
(
1
), pp.
22
32
.10.1063/1.1707363
20.
Sellars
,
C.
, and
McTegart
,
W.
,
1966
, “
On the Mechanism of Hot Deformation
,”
Acta Metall.
,
14
(
9
), pp.
1136
1138
.10.1016/0001-6160(66)90207-0
21.
Jonas
,
J.
,
Sellars
,
C.
, and
Tegart
,
W. M.
,
1969
, “
Strength and Structure Under Hot-Working Conditions
,”
Metall. Rev.
,
14
(
1
), pp.
1
24
.10.1179/mtlr.1969.14.1.1
22.
Shi
,
H.
,
McLaren
,
A.
,
Sellars
,
C.
,
Shahani
,
R.
, and
Bolingbroke
,
R.
,
1997
, “
Constitutive Equations for High Temperature Flow Stress of Aluminium Alloys
,”
Mater. Sci. Technol.
,
13
(
3
), pp.
210
216
.10.1179/mst.1997.13.3.210
23.
Zhang
,
H.
,
Wen
,
W.
, and
Cui
,
H.
,
2009
, “
Behaviors of IC10 Alloy Over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling
,”
Mater. Sci. Eng.: A
,
504
(
1
), pp.
99
103
.10.1016/j.msea.2008.10.056
24.
Samantaray
,
D.
,
Mandal
,
S.
, and
Bhaduri
,
A.
,
2009
, “
A Comparative Study on Johnson–Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9CR–1MO Steel
,”
Comput. Mater. Sci.
,
47
(
2
), pp.
568
576
.10.1016/j.commatsci.2009.09.025
25.
Abbasi-Bani
,
A.
,
Zarei-Hanzaki
,
A.
,
Pishbin
,
M.
, and
Haghdadi
,
N.
,
2014
, “
A Comparative Study on the Capability of Johnson–Cook and Arrhenius-Type Constitutive Equations to Describe the Flow Behavior of Mg–6Al–1Zn Alloy
,”
Mech. Mater.
,
71
, pp.
52
61
.10.1016/j.mechmat.2013.12.001
26.
Mirzaei
,
A.
,
Zarei-Hanzaki
,
A.
,
Haghdadi
,
N.
, and
Marandi
,
A.
,
2014
, “
Constitutive Description of High Temperature Flow Behavior of Sanicro-28 Super-Austenitic Stainless Steel
,”
Mater. Sci. Eng.: A
,
589
, pp.
76
82
.10.1016/j.msea.2013.09.036
27.
Samantaray
,
D.
,
Mandal
,
S.
, and
Bhaduri
,
A.
,
2010
, “
Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9CR–1MO (P91) Steel
,”
Mater. Des.
,
31
(
2
), pp.
981
984
.10.1016/j.matdes.2009.08.012
28.
Marandi
,
A.
,
Zarei-Hanzaki
,
A.
,
Haghdadi
,
N.
, and
Eskandari
,
M.
,
2012
, “
The Prediction of Hot Deformation Behavior in Fe–21MN–2.5Si–1.5Al Transformation-Twinning Induced Plasticity Steel
,”
Mater. Sci. Eng.: A
,
554
, pp.
72
78
.10.1016/j.msea.2012.06.014
29.
Haghdadi
,
N.
,
Zarei-Hanzaki
,
A.
, and
Abedi
,
H.
,
2012
, “
The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperatures Considering the Effect of Strain
,”
Mater. Sci. Eng.: A
,
535
, pp.
252
257
.10.1016/j.msea.2011.12.076
30.
Quan
,
G.-Z.
,
Ku
,
T.-W.
,
Song
,
W.-J.
, and
Kang
,
B.-S.
,
2011
, “
The Workability Evaluation of Wrought AZ80 Magnesium Alloy in Hot Compression
,”
Mater. Des.
,
32
(
4
), pp.
2462
2468
.10.1016/j.matdes.2010.11.025
31.
Changizian
,
P.
,
Zarei-Hanzaki
,
A.
, and
Roostaei
,
A. A.
,
2012
, “
The High Temperature Flow Behavior Modeling of AZ81 Magnesium Alloy Considering Strain Effects
,”
Mater. Des.
,
39
, pp.
384
389
.10.1016/j.matdes.2012.02.049
32.
Zhang
,
J.
,
Fan
,
Z.
,
Wang
,
Y.
, and
Zhou
,
B.
,
2000
, “
Microstructural Development of Al–15 Wt.% Mg2Si In Situ Composite With Mischmetal Addition
,”
Mater. Sci. Eng.: A
,
281
(
1
), pp.
104
112
.10.1016/S0921-5093(99)00732-7
33.
Emamy
,
M.
,
Nemati
,
N.
, and
Heidarzadeh
,
A.
,
2010
, “
The Influence of Cu Rich Intermetallic Phases on the Microstructure, Hardness and Tensile Properties of Al–15% Mg2Si Composite
,”
Mater. Sci. Eng.: A
,
527
(
12
), pp.
2998
3004
.10.1016/j.msea.2010.01.063
34.
Lin
,
Y.
,
Xia
,
Y.-C.
,
Chen
,
X.-M.
, and
Chen
,
M.-S.
,
2010
, “
Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy Over a Wide Range of Temperature and Strain Rate
,”
Comput. Mater. Sci.
,
50
(
1
), pp.
227
233
.10.1016/j.commatsci.2010.08.003
35.
Mcqueen
,
H.
,
2004
, “
Development of Dynamic Recrystallization Theory
,”
Mater. Sci. Eng.: A
,
387–389
, pp.
203
208
.10.1016/j.msea.2004.01.064
36.
Sabet
,
M.
,
Khoddam
,
S.
, and
Zarei-Hanzaki
,
A.
,
2009
, “
Dynamic Restoration Processes in High-Mn TWIP Steels
,”
ASME J. Eng. Mater. Technol.
,
131
(
4
), p.
044502
.10.1115/1.3120394
37.
Nes
,
E.
,
Marthinsen
,
K.
, and
Brechet
,
Y.
,
2002
, “
On the Mechanisms of Dynamic Recovery
,”
Scr. Mater.
,
47
(
9
), pp.
607
611
.10.1016/S1359-6462(02)00235-X
38.
Jin
,
N.
,
Zhang
,
H.
,
Han
,
Y.
,
Wu
,
W.
, and
Chen
,
J.
,
2009
, “
Hot Deformation Behavior of 7150 Aluminum Alloy During Compression at Elevated Temperature
,”
Mater. Charact.
,
60
(
6
), pp.
530
536
.10.1016/j.matchar.2008.12.012
39.
Haghshenas
,
M.
,
Zarei-Hanzaki
,
A.
, and
Fatemi-Varzaneh
,
S.
,
2008
, “
The Effects of Thermo-Mechanical Parameters on the Microstructure of Thixocast A356 Aluminum Alloy
,”
Mater. Sci. Eng.: A
,
480
(
1
), pp.
68
74
.10.1016/j.msea.2007.06.075
40.
Lin
,
Y.
,
Li
,
Q.-F.
,
Xia
,
Y.-C.
, and
Li
,
L.-T.
,
2012
, “
A Phenomenological Constitutive Model for High Temperature Flow Stress Prediction of Al–Cu–Mg Alloy
,”
Mater. Sci. Eng.: A
,
534
, pp.
654
662
.10.1016/j.msea.2011.12.023
41.
Patel
,
A.
,
Das
,
S.
, and
Prasad
,
B.
,
2011
, “
Compressive Deformation Behaviour of Al Alloy (2014)–10 Wt.% SiCP Composite: Effects of Strain Rates and Temperatures
,”
Mater. Sci. Eng.: A
,
530
, pp.
225
232
.10.1016/j.msea.2011.09.078
42.
Rokni
,
M.
,
Zarei-Hanzaki
,
A.
,
Roostaei
,
A. A.
, and
Abolhasani
,
A.
,
2011
, “
Constitutive Base Analysis of a 7075 Aluminum Alloy During Hot Compression Testing
,”
Mater. Des.
,
32
(
10
), pp.
4955
4960
.10.1016/j.matdes.2011.05.040
43.
McQueen
,
H.
, and
Blum
,
W.
,
1998
, “
Recovery and Recrystallization in Al Alloys Fundamentals and Practical Applications
,”
Proceedings of The 6th International Conference on Aluminum Alloys, ICAA-6
, Toyohashi, Japan, July 5–10, pp.
99
112
.
44.
Huang
,
X.
,
Zhang
,
H.
,
Han
,
Y.
,
Wu
,
W.
, and
Chen
,
J.
,
2010
, “
Hot Deformation Behavior of 2026 Aluminum Alloy During Compression at Elevated Temperature
,”
Mater. Sci. Eng.: A
,
527
(
3
), pp.
485
490
.10.1016/j.msea.2009.09.042
45.
Van De Langkruis
,
J.
,
Kool
,
W.
, and
Van Der Zwaag
,
S.
,
1999
, “
Assessment of Constitutive Equations in Modelling the Hot Deformability of Some Overaged Al–Mg–Si Alloys With Varying Solute Contents
,”
Mater. Sci. Eng.: A
,
266
(
1
), pp.
135
145
.10.1016/S0921-5093(99)00046-5
46.
Khan
,
A. S.
, and
Liu
,
H.
,
2012
, “
Variable Strain Rate Sensitivity in an Aluminum Alloy: Response and Constitutive Modeling
,”
Int. J. Plast.
,
36
, pp.
1
14
.10.1016/j.ijplas.2012.02.001
47.
Srinivasulu
,
S.
, and
Jain
,
A.
,
2006
, “
A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall-Runoff Models
,”
Appl. Soft Comput.
,
6
(
3
), pp.
295
306
.10.1016/j.asoc.2005.02.002
You do not currently have access to this content.