A compressive split Hopkinson pressure bar (SHPB) was used to investigate the dynamic mechanical behavior of graphene (GR) reinforced polyurethane (PU) composites (GR/PU) at high strain rates ranging from approximately 1500 s−1 to 5000 s−1. Four types of GR/PU composites with different GR contents: 0.25% GR, 0.5% GR, 0.75% GR, and 1% GR were prepared by the solution mixing method and divided into two groups of unheated and postheated specimens. Experimental results show that the GR/PU composite is a strong strain rate dependent material, especially in the high strain rate regime of 3000 s−1–5000 s−1. The dynamic mechanical properties of GR/PU composite in terms of plateau stress, peak stress, and peak load carrying capacity are better than that of pristine PU at most of the applied strain rates. Among the four different GR concentrations used, the 0.5 wt.%-GR specimen shows the highest peak stress, and the 1 wt.% GR specimen has the highest plateau stress; while no significant change in peak strain with changing GR weight fraction was observed. Compared to unheated specimens, the plateau stress, peak stress, and peak strain of postheated specimens are significantly higher.

References

1.
Kuilla
,
T.
,
Bhadra
,
S.
,
Yao
,
D.
,
Kim
,
N. H.
,
Bose
,
S.
, and
Lee
,
J. H.
,
2010
, “
Recent Advances in Graphene Based Polymer Composites
,”
Prog. Polym. Sci.
,
35
(
11
), pp.
1350
1375
.10.1016/j.progpolymsci.2010.07.005
2.
Khan
,
U.
,
Blighe
,
F. M.
, and
Coleman
,
J. N.
,
2010
, “
Selective Mechanical Reinforcement of Thermoplastic Polyurethane by Targeted Insertion of Functionalized SWCNTs
,”
J. Phys. Chem. C
,
114
(
26
), pp.
11401
11408
.10.1021/jp102938q
3.
Kim
,
H.
,
Abdala
,
A. A.
, and
Macosko
,
C. W.
,
2010
, “
Graphene/Polymer Nanocomposites
,”
Macromolecules
,
43
(
16
), pp.
6515
6530
.10.1021/ma100572e
4.
Zhao
,
X.
,
Zhang
,
Q.
, and
Chen
,
D.
,
2010
, “
Enhanced Mechanical Properties of Graphene-Based Poly(Vinyl Alcohol) Composites
,”
Macromolecules
,
43
(
5
), pp.
2357
2363
.10.1021/ma902862u
5.
Kim
,
H.
,
Miura
,
Y.
, and
Macosko
,
C. W.
,
2010
, “
Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity
,”
Chem. Mater.
,
22
(
11
), pp.
3441
3450
.10.1021/cm100477v
6.
Lee
,
H.-I.
, and
Jeong
,
H. M.
,
2009
, “
Functionalized Graphene Sheet/Polyurethane Nano-Composites
,”
Physics and Applications of Graphene: Experiments
, S. Mikhailoe, ed.,
InTech
,
Rijeka, Croatia
, pp.
193
208
.
7.
Wang
,
X.
,
Hu
,
Y.
,
Song
,
L.
,
Yang
,
H.
,
Xing
,
W.
, and
Lu
,
H.
,
2011
, “
In Situ Polymerization of Graphene Nanosheets and Polyurethane With Enhanced Mechanical and Thermal Properties
,”
J. Mater. Chem.
,
21
(
12
), pp.
4222
4227
.10.1039/c0jm03710a
8.
Nguyen
,
D. A.
,
Lee
,
Y. R.
,
Raghu
,
A. V.
,
MoJeong
,
H.
,
Shin
,
C. M.
, and
Kim
,
B. K.
,
2009
, “
Morphological and Physical Properties of a Thermoplastic Polyurethane Reinforced With Functionalized Graphene Sheet
,”
Polym. Int.
,
58
(
4
), pp.
412
417
.10.1002/pi.2549
9.
Hosur
,
M. V.
,
Alexander
,
J.
,
Vaidya
,
U. K.
, and
Jeelani
,
S.
,
2001
, “
High Strain Rate Compression Response of Carbon/Epoxy Laminate Composites
,”
Compos. Struct.
,
52
(
3–4
), pp.
405
417
.10.1016/S0263-8223(01)00031-9
10.
Woldesenbet
,
E.
,
Gupta
,
N.
, and
Vinson
,
J. R.
,
2002
, “
Determination of Moisture Effects on Impact Properties of Composite Materials
,”
J. Mater. Sci.
,
37
(
13
), pp.
2693
2698
.10.1023/A:1015864932198
11.
Naik
,
N. K.
, and
Kavala
,
V. R.
,
2008
, “
High Strain Rate Behavior of Woven Fabric Composites Under Compressive Loading
,”
Mater. Sci. Eng., A
,
474
(
1–2
), pp.
301
311
.10.1016/j.msea.2007.05.032
12.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z. Z.
, and
Koratka
,
N.
,
2009
, “
Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content
,”
ACS Publ.
,
3
(
12
), pp.
3884
3890
10.1021/nn9010472.
13.
Gorham
,
D. A.
,
1983
, “
A Numerical Method for the Correction of Dispersion in Pressure Bar Signals
,”
J. Phys. E: Sci. Instrum.
,
16
(
6
), pp.
477
479
.10.1088/0022-3735/16/6/008
14.
Gong
,
J. C.
,
Malvern
,
L. E.
, and
Jenkins
,
D. A.
, July
1990
, “
Dispersion Investigation in the Split Hopkinson Pressure Bar
,”
ASME J. Eng. Mater. Technol.
,
112
(
3
), pp.
309
314
.10.1115/1.2903329
15.
Gama
,
B. A.
,
Lopatnikov
,
S. L.
, and
Gillespie
,
J. W.
, Jr.
,
2004
, “
Hopkinson Bar Experimental Technique: A Critical Review
,”
ASME Appl. Mech. Rev.
,
57
(
4
), pp.
223
250
.10.1115/1.1704626
16.
George
,
T. G.
, III
,
2000
, “
Classic Split-Hopkinson Pressure Bar Testing
,”
Mechanical Testing and Evaluation (ASM Handbook)
, Vol.
8
,
ASM International
,
Materials Park, OH
, pp.
462
476
.
17.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2005
, “
Pulse Shaping Techniques for Testing Elastic-Plastic Materials With a Split Hopkinson Pressure Bar
,”
Exp. Mech.
,
45
(
2
), pp.
186
195
.10.1007/BF02428192
18.
Song
,
B.
, and
Chen
,
W.
,
2004
, “
Dynamic Stress Equilibrium in Split Hopkinson Pressure Bar Tests on Soft Materials
,”
Exp. Mech.
,
44
(
3
), pp.
300
312
.10.1007/BF02427897
19.
Lee
,
O. S.
,
Kim
,
S. H.
, and
Lee
,
J. W.
,
2006
, “
Thickness Effect of Pulse Shaper on Dynamic Stress Equilibrium in the NBR Rubber Specimen
,”
Key Eng. Mater.
,
306–308
, pp.
1007
1012
.10.4028/www.scientific.net/KEM.306-308.1007
20.
Vecchio
,
K. S.
, and
Jiang
,
F.
,
2007
, “
Improved Pulse Shaping to Achieve Constant Strain Rate and Stress Equilibrium in Split Hopkinson Pressure Bar Testing
,”
Metall. Mater. Trans. A
,
38
(
11
), pp.
2655
2665
.10.1007/s11661-007-9204-8
21.
Frew
,
D. J.
,
Forrestal
,
M. J.
, and
Chen
,
W.
,
2002
, “
Pulse Shaping Techniques for Testing Brittle Materials With a Split Hopkinson Pressure Bar
,”
Exp. Mech.
,
42
(
1
), pp.
93
106
.10.1007/BF02411056
22.
Chen
,
W.
,
Zhang
,
B.
, and
Forrestal
,
M. J.
,
1998
, “
A Split Hopkinson Bar Technique for Low-Impedance Materials
,”
Exp. Mech.
,
39
(
2
), pp.
81
85
.10.1007/BF02331109
23.
Prisacariu
,
C.
,
2011
,
Polyurethane Elastomers: From Morphology to Mechanical Aspects
,
Springer
,
Berlin, Germany
.
24.
Li
,
Y.
,
Gao
,
T.
,
Liu
,
J.
,
Linliu
,
K.
,
Desper
,
C. R.
, and
Chu
,
B.
,
1992
, “
Multiphase Structure of Segmented PU: Effects of Temperature and Annealing
,”
Macromolecules
,
25
(
26
), pp.
7356
7372
10.1021/ma00052a045.
25.
Jiang
,
F.
,
Zhang
,
L.
,
Jiang
,
Y.
,
Lu
,
Y.
, and
Wang
,
W.
,
2012
, “
Effect of Annealing Treatment on the Structure and Properties of Polyurethane/Multiwalled Carbon Nanotube Nanocomposites
,”
J. Appl. Polym. Sci.
,
126
(
3
), pp.
845
852
.10.1002/app.36955
You do not currently have access to this content.