This paper describes a novel process designed specifically for extruding small scale billets, between and , in very short cycle times of 10 min. Induction heated nonconventional isothermal extrusion (IHNCIE) is used to produce wires of Nitinol and compare its efficacy with wires produced conventionally by hot rolling. With two four to one area reductions, a wire of 3 mm diameter was formed by IHNCIE. The extruded wires showed good superelastic tensile properties. This 3 mm diameter extruded wire exhibited a microstructure with grains of approximately without a recrystallization anneal. Our method offers an alternative route for the production of small scale billets into a wire.
Issue Section:
Research Papers
Keywords:
NiTi,
extrusion,
induction,
rolling,
billets,
elasticity,
extrusion,
nickel alloys,
tensile strength,
titanium alloys,
wires
1.
Stoeckel
, D.
, 2000, “Nitinol Medical Devices and Implants
,” Minimally Invasive Ther. Allied Technol.
1364-5706, 9
(2
), pp. 81
–88
.2.
Pelton
, A. R.
, Stoeckel
, D.
, and Duerig
, T. W.
, 2000, “Medical Uses of Nitinol
,” Mater. Sci. Forum
0255-5476, 327–328
, pp. 63
–70
.3.
Duerig
, T. W.
, Pelton
, A. R.
, and Stockel
, D.
, 1998, “The Use of Superelasticity in Medicine
,” Int. J. Fatigue
0142-1123, 20
(1
), pp. 74
–80
.4.
Otsuka
, T.
, and Wayman
, C. M.
, 1998, Shape Memory Materials
, Cambridge University Press
, Cambridge, UK
.5.
Duerig
, T. W.
, Pelton
, A. R.
, and Stockel
, D.
, 1996, “The Utility of Superelasticity in Medicine
,” Biomed. Mater. Eng.
0959-2989, 6
, pp. 255
–266
.6.
Szold
, A.
, 2006, “Nitinol: Shape-Memory and Super-Elastic Materials in Surgery
,” Surg. Endosc
0930-2794, 20
, pp. 1493
–1496
.7.
Otsuka
, K.
, and Ren
, X.
, 2005, “Physical Metallurgy of Ti–Ni-Based Shape Memory Alloys
,” Prog. Mater. Sci.
0079-6425, 50
, pp. 511
–678
.8.
Eaton-Evans
, J.
, Dulieu-Barton
, J. M.
, Little
, E. G.
, and Brown
, I. A.
, 2007, “Observations During Mechanical Testing of Nitinol
,” J. Mech. Eng. Sci.
0022-2542, 222
, pp. 97
–105
.9.
Shaw
, J. A.
, 2002, “A Thermomechanical Model for a 1-D Shape Memory Alloy Wire With Propagating Instabilities
,” Int. J. Solids Struct.
0020-7683, 39
, pp. 1275
–1305
.10.
Wayman
, C. M.
, and Duerig
, T. W.
, 1990, An Introduction to Martensite and Shape Memory, Engineering Aspects of Shape Memory Alloys
, Butterworth-Heinemann
, London, England
, pp. 3
–15
.11.
Airoldi
, G.
, and Rivolta
B.
, 1988, “Thermal Cycling and Intermediate R-Phase in NiTi System
,” Phys. Scr.
0031-8949, 37
, pp. 891
–893
.12.
Buehler
, W. J.
, and Wang
, F. E.
, 1968, “A Summary of Recent Research on the Nitinol Alloys and Their Potential Application in Ocean Engineering
,” Ocean Eng.
0029-8018, 1
, pp. 105
–108
.13.
Gil
, F. J.
, and Planell
, J. A.
, 1998, “In Vitro Thermomechanical Ageing of Ni-Ti Alloys
,” J. Biomater. Appl.
0885-3282, 12
, pp. 237
–248
.14.
Russell
, S. M.
, 2000, “Nitinol Melting and Fabrication
,” SMST 2000 Conference Proceedings
, pp. 1
–9
.15.
Damodaran
, D.
, and Shivpuri
, R.
, 2004, “Prediction and Control of Part Distortion During the Hot Extrusion of Titanium Alloys
,” J. Mater. Process. Technol.
0924-0136, 150
, pp. 70
–75
.16.
Tuissi
, A.
, Bassani
, P.
, Mangioni
, A.
, Toia
, L.
, and Butera
, F.
, 2004, “Fabrication Process and Characterisation of NiTi Wires for Actuators
,” SMST 2004 Conference Proceedings
, pp. 501
–508
.17.
Wu
, M. H.
, 2001, “Fabrication of Nitinol Materials and Components
,” SMST 2001 Conference Proceedings
, pp. 285
–292
.18.
Frick
, C. P.
, Ortega
, A. M.
, Tyber
, J.
, Maksound
, A. E. M.
, Maier
, H. J.
, Liu
, Y.
, and Gall
, K.
, 2005, “Thermal Processing of Polycrystalline NiTi Shape Memory Alloys
,” J. Mater. Sci. Eng.
1934-8959, 405
, pp. 34
–49
.19.
Müller
, K.
, 2001, “Extrusion of Nickel-Titanium Alloys Nitinol to Hollow Shapes
,” J. Mater. Process. Technol.
0924-0136, 111
, pp. 122
–126
.20.
Grossmann
, C.
, Frenzel
, J.
, Sampath
, V.
, Depka
, T.
, Oppenkowski
, A.
, Somsen
, C.
, Neuking
, K.
, Theisen
, W.
, and Eggeler
, G.
, 2008, “Processing and Property Assessment of NiTi and NiTiCu Shape Memory Actuator Springs
,” Materialwiss. Werkstofftech.
0933-5137, 39
(8
), pp. 499
–510
.21.
Kurita
, T.
, Matsumoto
, H.
, and Abe
, H.
, 2004, “Transformation Behavior in Rolled NiTi
,” J. Alloys Compd.
0925-8388, 381
, pp. 158
–161
.22.
Neves
, F.
, Martins
, I.
, Correia
, J. B.
, Oliveira
, M.
, and Gaffet
, E.
, 2007, “Reactive Extrusion Synthesis of Mechanically Activated Ti–50Ni Powders
,” Intermetallics
0966-9795, 15
, pp. 1623
–1631
.23.
Neves
, F.
, Martins
, I.
, Correia
, J. B.
, Oliveira
, M.
, and Gaffet
, E.
, 2008, “Mechanically Activated Reactive Forging Synthesis (MARFOS) of NiTi
,” Intermetallics
0966-9795, 16
, pp. 889
–895
.24.
Pelton
, A. R.
, Dicello
, J.
, and Miyazaki
, S.
, 2000, “Optimisation of Processing and Properties of Medical Grade Nitinol Wire
,” Minimally Invasive Ther. Allied Technol.
1364-5706, 9
(2
), pp. 107
–118
.25.
Semiatin
, S. L.
, 2005, ASM Handbook: Volume 14A: Metalworking: Bulk Forming
, ASM International
, Ohio
.26.
Bauser
, M.
, Sauer
, G.
, and Siegert
, K.
, 2006, Extrusion
, ASM International
, Ohio
.27.
Mercier
, O.
, Richter
, D.
, and Schröder
, G.
, 1983, “Process for Manufacturing Semifinished Product From a Memory Alloy Containing Copper
,” U.S. Patent No. 4,404,025.28.
Melton
, K.
, Mercier
, O.
, and Schröder
, G.
, 1983, “Process for Manufacturing a Finished Component From a NiTi or a NiTiCu Memory Alloy
,” U.S. Patent No. 4,386,971.29.
Duerig
, T. W.
, 1990, Engineering Aspects of Shape Memory Alloys
, Butterworth-Heinemann
, London, England
.30.
Gall
, K.
, Tyber
, J.
, Brice
, V.
, Frick
, C. P.
, Maier
, H. J.
, and Morgan
, N.
, 2005, “Tensile Deformation of NiTi Wires
,” J. Biomed. Mater. Res.
0021-9304, 75A
, pp. 810
–823
.31.
Yuan
, W. Q.
, and Yang
, S. Q.
, 2002, “Effect of Texture on Elastic Modulus and Pseudo-Elastic Strain of Ti-Ni Shape Memory Alloys
,” J. Mater. Sci. Lett.
0261-8028, 21
, pp. 443
–445
.32.
Uchil
, J.
, Mahesh
, K. K.
, and Kumara
, K. G.
, 2001, “Calorimetric Study of the Effect of Linear Strain on the Shape Memory Properties of Nitinol
,” Physica B
0921-4526, 305
, pp. 1
–9
.33.
Uchil
, U.
, 2002, “Shape Memory Alloys—Characterization Techniques
,” Pramana, J. Phys.
0304-4289, 58
(5–6
), pp. 1131
–1139
.34.
Their
, M.
, Treppmann
, D.
, Drescher
, D.
, and Boureaul
, C.
, 1992, “Transformation Characteristics and Related Deformation Behaviour in Orthodontic NiTi Wire
,” J. Mater. Sci.: Mater. Med.
0957-4530, 3
(3
), pp. 93
–98
.35.
Bradley
, T. G.
, Brantley
, W. A.
, and Culbertson
, B. M.
, 1996, “Differential Scanning Calorimetry (DSC) Analyses of Superelastic and Nonsuperelastic Nickel-Titanium Orthodontic Wires
,” Am. J. Orthod. Dentofacial Orthop.
0889-5406, 110
, pp. 553
–558
.36.
Thayer
, T. A.
, Bagby
, M. D.
, Moore
, R. N.
, and DeAngelis
, R. J.
, 1995, “X-Ray Diffraction of Nitinol Orthodontic Arch Wires
,” Am. J. Orthod. Dentofacial Orthop.
0889-5406, 107
(6
), pp. 604
–612
.37.
Frick
, C. P.
, Ortega
, A. M.
, Tyber
, J.
, Gall
, K.
, and Maier
, H. J.
, 2004, “Multiscale Structure and Properties of Cast and Deformation Processed Polycrystalline NiTi Shape-Memory Alloys
,” Metall. Mater. Trans. A
1073-5623, 35
, pp. 2013
–2025
.38.
Undisz
, A.
, Rettenmayr
, M.
, Wilke
, M.
, and Spieß
, L.
, 2009, Non-Martensitic Needle-Like Structures on Ni-Ti Alloys—Occurrence and Origin
, ESOMAT 2009
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.