This paper describes a novel process designed specifically for extruding small scale billets, between 850°C and 950°C, in very short cycle times of 10 min. Induction heated nonconventional isothermal extrusion (IHNCIE) is used to produce wires of Nitinol and compare its efficacy with wires produced conventionally by hot rolling. With two four to one area reductions, a wire of 3 mm diameter was formed by IHNCIE. The extruded wires showed good superelastic tensile properties. This 3 mm diameter extruded wire exhibited a microstructure with grains of approximately 2μm without a recrystallization anneal. Our method offers an alternative route for the production of small scale billets into a wire.

1.
Stoeckel
,
D.
, 2000, “
Nitinol Medical Devices and Implants
,”
Minimally Invasive Ther. Allied Technol.
1364-5706,
9
(
2
), pp.
81
88
.
2.
Pelton
,
A. R.
,
Stoeckel
,
D.
, and
Duerig
,
T. W.
, 2000, “
Medical Uses of Nitinol
,”
Mater. Sci. Forum
0255-5476,
327–328
, pp.
63
70
.
3.
Duerig
,
T. W.
,
Pelton
,
A. R.
, and
Stockel
,
D.
, 1998, “
The Use of Superelasticity in Medicine
,”
Int. J. Fatigue
0142-1123,
20
(
1
), pp.
74
80
.
4.
Otsuka
,
T.
, and
Wayman
,
C. M.
, 1998,
Shape Memory Materials
,
Cambridge University Press
,
Cambridge, UK
.
5.
Duerig
,
T. W.
,
Pelton
,
A. R.
, and
Stockel
,
D.
, 1996, “
The Utility of Superelasticity in Medicine
,”
Biomed. Mater. Eng.
0959-2989,
6
, pp.
255
266
.
6.
Szold
,
A.
, 2006, “
Nitinol: Shape-Memory and Super-Elastic Materials in Surgery
,”
Surg. Endosc
0930-2794,
20
, pp.
1493
1496
.
7.
Otsuka
,
K.
, and
Ren
,
X.
, 2005, “
Physical Metallurgy of Ti–Ni-Based Shape Memory Alloys
,”
Prog. Mater. Sci.
0079-6425,
50
, pp.
511
678
.
8.
Eaton-Evans
,
J.
,
Dulieu-Barton
,
J. M.
,
Little
,
E. G.
, and
Brown
,
I. A.
, 2007, “
Observations During Mechanical Testing of Nitinol
,”
J. Mech. Eng. Sci.
0022-2542,
222
, pp.
97
105
.
9.
Shaw
,
J. A.
, 2002, “
A Thermomechanical Model for a 1-D Shape Memory Alloy Wire With Propagating Instabilities
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
1275
1305
.
10.
Wayman
,
C. M.
, and
Duerig
,
T. W.
, 1990,
An Introduction to Martensite and Shape Memory, Engineering Aspects of Shape Memory Alloys
,
Butterworth-Heinemann
,
London, England
, pp.
3
15
.
11.
Airoldi
,
G.
, and
Rivolta
B.
, 1988, “
Thermal Cycling and Intermediate R-Phase in NiTi System
,”
Phys. Scr.
0031-8949,
37
, pp.
891
893
.
12.
Buehler
,
W. J.
, and
Wang
,
F. E.
, 1968, “
A Summary of Recent Research on the Nitinol Alloys and Their Potential Application in Ocean Engineering
,”
Ocean Eng.
0029-8018,
1
, pp.
105
108
.
13.
Gil
,
F. J.
, and
Planell
,
J. A.
, 1998, “
In Vitro Thermomechanical Ageing of Ni-Ti Alloys
,”
J. Biomater. Appl.
0885-3282,
12
, pp.
237
248
.
14.
Russell
,
S. M.
, 2000, “
Nitinol Melting and Fabrication
,”
SMST 2000 Conference Proceedings
, pp.
1
9
.
15.
Damodaran
,
D.
, and
Shivpuri
,
R.
, 2004, “
Prediction and Control of Part Distortion During the Hot Extrusion of Titanium Alloys
,”
J. Mater. Process. Technol.
0924-0136,
150
, pp.
70
75
.
16.
Tuissi
,
A.
,
Bassani
,
P.
,
Mangioni
,
A.
,
Toia
,
L.
, and
Butera
,
F.
, 2004, “
Fabrication Process and Characterisation of NiTi Wires for Actuators
,”
SMST 2004 Conference Proceedings
, pp.
501
508
.
17.
Wu
,
M. H.
, 2001, “
Fabrication of Nitinol Materials and Components
,”
SMST 2001 Conference Proceedings
, pp.
285
292
.
18.
Frick
,
C. P.
,
Ortega
,
A. M.
,
Tyber
,
J.
,
Maksound
,
A. E. M.
,
Maier
,
H. J.
,
Liu
,
Y.
, and
Gall
,
K.
, 2005, “
Thermal Processing of Polycrystalline NiTi Shape Memory Alloys
,”
J. Mater. Sci. Eng.
1934-8959,
405
, pp.
34
49
.
19.
Müller
,
K.
, 2001, “
Extrusion of Nickel-Titanium Alloys Nitinol to Hollow Shapes
,”
J. Mater. Process. Technol.
0924-0136,
111
, pp.
122
126
.
20.
Grossmann
,
C.
,
Frenzel
,
J.
,
Sampath
,
V.
,
Depka
,
T.
,
Oppenkowski
,
A.
,
Somsen
,
C.
,
Neuking
,
K.
,
Theisen
,
W.
, and
Eggeler
,
G.
, 2008, “
Processing and Property Assessment of NiTi and NiTiCu Shape Memory Actuator Springs
,”
Materialwiss. Werkstofftech.
0933-5137,
39
(
8
), pp.
499
510
.
21.
Kurita
,
T.
,
Matsumoto
,
H.
, and
Abe
,
H.
, 2004, “
Transformation Behavior in Rolled NiTi
,”
J. Alloys Compd.
0925-8388,
381
, pp.
158
161
.
22.
Neves
,
F.
,
Martins
,
I.
,
Correia
,
J. B.
,
Oliveira
,
M.
, and
Gaffet
,
E.
, 2007, “
Reactive Extrusion Synthesis of Mechanically Activated Ti–50Ni Powders
,”
Intermetallics
0966-9795,
15
, pp.
1623
1631
.
23.
Neves
,
F.
,
Martins
,
I.
,
Correia
,
J. B.
,
Oliveira
,
M.
, and
Gaffet
,
E.
, 2008, “
Mechanically Activated Reactive Forging Synthesis (MARFOS) of NiTi
,”
Intermetallics
0966-9795,
16
, pp.
889
895
.
24.
Pelton
,
A. R.
,
Dicello
,
J.
, and
Miyazaki
,
S.
, 2000, “
Optimisation of Processing and Properties of Medical Grade Nitinol Wire
,”
Minimally Invasive Ther. Allied Technol.
1364-5706,
9
(
2
), pp.
107
118
.
25.
Semiatin
,
S. L.
, 2005,
ASM Handbook: Volume 14A: Metalworking: Bulk Forming
,
ASM International
,
Ohio
.
26.
Bauser
,
M.
,
Sauer
,
G.
, and
Siegert
,
K.
, 2006,
Extrusion
,
ASM International
,
Ohio
.
27.
Mercier
,
O.
,
Richter
,
D.
, and
Schröder
,
G.
, 1983, “
Process for Manufacturing Semifinished Product From a Memory Alloy Containing Copper
,” U.S. Patent No. 4,404,025.
28.
Melton
,
K.
,
Mercier
,
O.
, and
Schröder
,
G.
, 1983, “
Process for Manufacturing a Finished Component From a NiTi or a NiTiCu Memory Alloy
,” U.S. Patent No. 4,386,971.
29.
Duerig
,
T. W.
, 1990,
Engineering Aspects of Shape Memory Alloys
,
Butterworth-Heinemann
,
London, England
.
30.
Gall
,
K.
,
Tyber
,
J.
,
Brice
,
V.
,
Frick
,
C. P.
,
Maier
,
H. J.
, and
Morgan
,
N.
, 2005, “
Tensile Deformation of NiTi Wires
,”
J. Biomed. Mater. Res.
0021-9304,
75A
, pp.
810
823
.
31.
Yuan
,
W. Q.
, and
Yang
,
S. Q.
, 2002, “
Effect of Texture on Elastic Modulus and Pseudo-Elastic Strain of Ti-Ni Shape Memory Alloys
,”
J. Mater. Sci. Lett.
0261-8028,
21
, pp.
443
445
.
32.
Uchil
,
J.
,
Mahesh
,
K. K.
, and
Kumara
,
K. G.
, 2001, “
Calorimetric Study of the Effect of Linear Strain on the Shape Memory Properties of Nitinol
,”
Physica B
0921-4526,
305
, pp.
1
9
.
33.
Uchil
,
U.
, 2002, “
Shape Memory Alloys—Characterization Techniques
,”
Pramana, J. Phys.
0304-4289,
58
(
5–6
), pp.
1131
1139
.
34.
Their
,
M.
,
Treppmann
,
D.
,
Drescher
,
D.
, and
Boureaul
,
C.
, 1992, “
Transformation Characteristics and Related Deformation Behaviour in Orthodontic NiTi Wire
,”
J. Mater. Sci.: Mater. Med.
0957-4530,
3
(
3
), pp.
93
98
.
35.
Bradley
,
T. G.
,
Brantley
,
W. A.
, and
Culbertson
,
B. M.
, 1996, “
Differential Scanning Calorimetry (DSC) Analyses of Superelastic and Nonsuperelastic Nickel-Titanium Orthodontic Wires
,”
Am. J. Orthod. Dentofacial Orthop.
0889-5406,
110
, pp.
553
558
.
36.
Thayer
,
T. A.
,
Bagby
,
M. D.
,
Moore
,
R. N.
, and
DeAngelis
,
R. J.
, 1995, “
X-Ray Diffraction of Nitinol Orthodontic Arch Wires
,”
Am. J. Orthod. Dentofacial Orthop.
0889-5406,
107
(
6
), pp.
604
612
.
37.
Frick
,
C. P.
,
Ortega
,
A. M.
,
Tyber
,
J.
,
Gall
,
K.
, and
Maier
,
H. J.
, 2004, “
Multiscale Structure and Properties of Cast and Deformation Processed Polycrystalline NiTi Shape-Memory Alloys
,”
Metall. Mater. Trans. A
1073-5623,
35
, pp.
2013
2025
.
38.
Undisz
,
A.
,
Rettenmayr
,
M.
,
Wilke
,
M.
, and
Spieß
,
L.
, 2009,
Non-Martensitic Needle-Like Structures on Ni-Ti Alloys—Occurrence and Origin
,
ESOMAT 2009
.
You do not currently have access to this content.