Superplastic forming (SPF) of metallic alloys allows the production of components with particularly complex shapes since in this regime, due to the predominance of grain boundary sliding (GBS), the material exhibits a high plastic stability. However, in many light alloys (i.e., Al or Mg alloys), superplastic deformation induces damage leading to premature fracture. Despite extensive work in the past, the mechanisms of damage induced by superplastic deformation remain under debate. In particular, due to the important contribution of GBS, voids with very irregular shapes frequently develop, resulting in a difficulty to obtain reliable experimental data from conventional quantitative metallography. It is the reason why the use of X-ray microtomography, providing 3D images of material bulk, is a particularly fruitful technique to investigate damage processes in superplastic materials. Thanks to this technique, damage development during superplastic deformation of Al and Mg alloys is investigated and the three main steps of damage development (nucleation, growth, and coalescence) are discussed.

1.
Cloetens
,
P.
,
Pateyron-Salome
,
M.
,
Buffière
,
J. Y.
,
Peix
,
G.
,
Baruchel
,
J.
,
Peyrin
,
F.
, and
Schlenker
,
M.
, 1997, “
Observation of Microstructure and Damage in Materials by Phase Sensitive Radiography and Tomography
,”
J. Appl. Phys.
0021-8979,
81
, pp.
5878
5886
.
2.
Martin
,
C. F.
,
Blandin
,
J. J.
, and
Salvo
,
L.
, 2001, “
Variations in Microstructure and Texture During High Temperature Deformation of Al–Mg Alloy
,”
Mater. Sci. Eng., A
0921-5093,
297
, pp.
212
222
.
3.
Dupuy
,
L.
, and
Blandin
,
J. J.
, 2002, “
Damage Sensitivity in a Commercial Al Alloy Processed by Equal Channel Angular Extrusion
,”
Acta Mater.
1359-6454,
50
, pp.
3251
3264
.
4.
Boissière
,
R.
, and
Blandin
,
J. J.
, 2006, “
Superplastic Forming of Magnesium Alloys: Composition and Microstructure Effects
,”
Seventh International Conference on Magnesium Alloys and their Applications
,
K. U.
Kainer
, ed.,
DGM
, Dresden, Nov. 6–9, pp.
393
398
.
5.
Mussi
,
A.
,
Blandin
,
J. J.
,
Salvo
,
L.
, and
Rauch
,
E.
, 2006, “
Resistance to Strain Induced Damage of an Ultra Fine Grained Magnesium Alloy Deformed in Superplastic Conditions
,”
Acta Mater.
1359-6454,
54
, pp.
3801
3809
.
6.
Martin
,
C. F.
,
Josserond
,
C.
,
Salvo
,
L.
,
Blandin
,
J. J.
,
Cloetens
,
P.
, and
Boller
,
E.
, 2000, “
Characterisation by X-Ray Tomography of Cavity Coalescence During Superplastic Deformation
,”
Scr. Mater.
1359-6462,
42
, pp.
375
381
.
7.
Dupuy
,
L.
,
Blandin
,
J. J.
, and
Rauch
,
E. F.
, 2000, “
Structural and Mechanical Properties of an Al–Mg Alloy Processed by ECAE
,”
Mater. Sci. Technol.
0267-0836,
16
, pp.
1256
1258
.
8.
Raj
,
R.
, and
Ashby
,
M. F.
, 1975, “
Intergranular Fracture at Elevated Temperature
,”
Acta Metall.
0001-6160,
23
, pp.
653
666
.
9.
Pilling
,
J.
, and
Ridley
,
N.
, 1988, “
Cavitation in Superplastic Alloys and the Effect of Hydrostatic Pressure
,”
Res. Mech.
0143-0084,
23
, pp.
31
63
.
10.
Needleman
,
A.
, and
Rice
,
J. R.
, 1980, “
Plastic Creep Flow Effects in the Diffuse Cavitation of Grain Boundaries
,”
Acta Metall.
0001-6160,
28
, pp.
1315
1332
.
11.
Kulas
,
M. A.
,
Green
,
W. P.
,
Taleff
,
E. M.
,
Krajewski
,
P. E.
,
Mc Nelley
,
T. R.
, 2006, “
Failure Mechanisms in Superplastic AA5083 Materials
,”
Metall. Mater. Trans. A
1073-5623,
37A
, pp.
645
655
.
12.
Blandin
,
J. J.
, 2003, “
Optimisation of Mechanical Properties of a AZ 91 Alloy by Microstructure Control
,”
Mater. Sci. Forum
0255-5476,
426–432
, pp.
551
556
.
13.
Hancock
,
J. W.
, 1976, “
Creep Cavitation Without a Vacancy Flux
,”
Met. Sci.
0306-3453,
10
, pp.
319
325
.
14.
Beere
,
W.
, and
Speight
,
M. V.
, 1978, “
Creep Cavitation by Vacancy Diffusion in Plastically Deforming Solid
,”
Met. Sci.
0306-3453,
12
, pp.
172
176
.
15.
Chokshi
,
A. H.
, and
Langdon
,
T. G.
, 1987, “
A Model for Diffusional Cavity Growth in Superplasticity
,”
Acta Metall.
0001-6160,
35
, pp.
1089
1101
.
16.
Bae
,
D. H.
, and
Ghosh
,
A. K.
, 2002, “
Cavity Growth During Superplastic Flow in an Al–Mg Alloy: Experimental Study
,”
Acta Mater.
1359-6454,
50
, pp.
993
1009
.
17.
Chen
,
Z.
,
Worswick
,
M. J.
,
Pilkey
,
A. K.
, and
Lloyd
,
D. J.
, 2005, “
Damage Percolation During Stretch Flange Forming of Aluminium Sheet
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
2692
2717
.
18.
Nicolaou
,
P. D.
, and
Semiatin
,
S. L.
, 1999, “
Modelling of Cavity Coalescence During Tensile Deformation
,”
Acta Mater.
1359-6454,
47
, pp.
3679
3686
.
19.
Nicolaou
,
P. D.
, and
Semiatin
,
S. L.
, 2000, “
An Analysis of the Effect of Continuous Nucleation and Coalescence on Cavitation During Hot Tension Testing
,”
Acta Mater.
1359-6454,
48
, pp.
3441
3450
.
20.
Yu
,
H. Q.
,
Blandin
,
J. J.
, and
Salvo
,
L.
, 2003, “
Comparison Between 2D and 3D Characterisation of Damage Induced by Superplastic Deformation
,”
Eighth International Conference on Superplasticity of Advanced Materials (ICSAM 03)
,
Oxford
, Jul. 28–30,
R. I.
Todd
, ed., Trans Tech (
Switzerland
), pp.
55
60
.
You do not currently have access to this content.