The present study encompasses the influence of ply sequence and thermoelastic stress field on asymmetric delamination growth behavior emanating from elliptical holes in laminated fiber reinforced polymeric composites. Results, emphasizing the effect of thermal residual stresses on delamination growth behavior of the composite laminates subjected to two different loading conditions, i.e., in-plane tensile and compressive loadings, are presented. Two sets of full three-dimensional finite element analyses have been performed to calculate the displacements and interlaminar stresses along the delaminated interfaces responsible for the delamination onset and propagation. Modified crack closure integral methods based on the concepts of linear elastic fracture mechanics have been followed to evaluate the individual modes of strain energy release rates along the delamination front. In each case, the delamination is embedded at a different depth along the thickness direction of the laminates. It is observed that the fiber orientation of the plies bounding the delamination front significantly influences the distribution of the local strain energy release rate. Also, the residual thermal stresses have a detrimental effect on the laminates subjected to compressive loading and more so in the case of laminates with delaminations existing closer to the top and bottom surfaces of the laminate.

1.
Pipes
,
R. B.
, and
Pagano
,
N. J.
, 1970, “
Interlaminar Stresses in Composite Laminates Under Uniform Axial Extension
,”
J. Compos. Mater.
0021-9983,
4
, pp.
538
548
.
2.
Wang
,
A. S. D.
, and
Crossman
,
F. W.
, 1980, “
Initiation and Growth of Transverse Cracks and Delaminations in Composite Laminates. Part I: An Energy Method
,” J. Compos. Mater. Suppl., pp.
14
71
.
3.
Rybicki
,
E. F.
,
Schmueser
,
D. W.
, and
Fox
,
J.
, 1977, “
An Energy Release Rate Approach for Stable Crack Growth in the Free-Edge Delamination Problems
,”
J. Compos. Mater.
0021-9983,
11
, pp.
470
487
.
4.
O’Brien
,
T. K.
, 1982, “
Characterisation of Delamination Onset and Growth in a Composite Laminate
,”
ASTM Spec. Tech. Publ.
0066-0558,
20
, pp.
140
167
.
5.
Hellen
,
T. K.
, 1975, “
On the Method of Virtual Crack Extentions
,”
Int. J. Numer. Methods Eng.
0029-5981,
9
, pp.
187
207
.
6.
Hahn
,
H. T.
, and
Johannesson
,
T.
, 1982, “
A Correlation Between Fracture Energy and Fracture Morphology in Mixed-Mode Fracture of Composites
,”
Proceedings of ICM
, Vol.
4
, pp.
168
183
.
7.
Pradhan
,
B.
, and
Chakraborty
,
D.
, 2000, “
Fracture Behaviour of FRP Composite Laminates With an Embedded Delamination at the Interface
,”
J. Reinf. Plast. Compos.
0731-6844,
19
, pp.
1004
1023
.
8.
Yin
,
W. L.
, 1998, “
Thermomechanical Buckling of Delaminated Composite Laminates
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
2639
2653
.
9.
Hahn
,
H. T.
, and
Pagano
,
N. J.
, 1975, “
Curing Stresses in Composite Laminates
,”
J. Compos. Mater.
0021-9983,
9
, pp.
91
106
.
10.
Fish
,
J. C.
, and
Malaznik
,
S. D.
, 1996, “
Fracture of Double Beam Specimens Containing 90-Degree Plies
,”
Key Eng. Mater.
1013-9826,
121–122
, pp.
347
360
.
11.
Nairn
,
J. A.
, 1997, “
Fracture Mechanics of Composites With Residual Thermal Stresses
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
804
810
.
12.
Tay
,
T. E.
, and
Shen
,
F.
, 2001, “
Analysis of Delamination Growth in Laminated Composites With Consideration for Residual Thermal Stress Effects
,”
J. Compos. Mater.
0021-9983,
36
, pp.
1299
1320
.
13.
Pradhan
,
B.
, and
Panda
,
S. K.
, 2006, “
Effect of Material Anisotropy and Curing Stresses on Interface Delaminaion Propagation Characteristics in Multiply Laminated FRP Composites
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
383
392
.
14.
Pradhan
,
B.
, and
Panda
,
S. K.
, 2006, “
The Influence of Ply Sequence and Thermoelastic Stress Field on Asymmetric Delamination Crack Rowth Behavior of Embedded Delaminations in Laminated FRP Composites
,”
Compos. Sci. Technol.
0266-3538,
66
, pp.
417
426
.
15.
Babu
,
P. R.
, and
Pradhan
,
B.
, 2008, “
Thermoelastic Effects on Mixed-Mode Delamination Growth Emanating From Circular Holes in Laminated FRP Compoistes
,” Compos. Struct.,
82
, pp.
50
60
16.
Crews
,
J. H.
, Jr.
,
Shivakumar
,
K. N.
, and
Raju
,
I. S.
, 1991, “
Strain Energy Release Rate Distribution for Double Cantilever Beam Specimen
,”
AIAA J.
0001-1452,
29
, pp.
1686
1691
.
17.
Raju
,
I. S.
,
Crews
,
J. H.
, and
Aminpour
,
M. A.
, 1988, “
Convergence of Strain Energy Release Rate Components for Edge Delamianted Composite Lamiantes
,”
Eng. Fract. Mech.
0013-7944,
30
, pp.
383
396
.
18.
Irwin
,
G. R.
, 1957, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
0021-8936,
24
, pp.
361
364
.
19.
Rolfes
,
R.
, and
Rohwer
,
K.
, 2000, “
Integrated Thermal and Mechanical Analysis of Composite Plates and Shells
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
2097
2106
.
20.
Krüeger
,
R.
, and
O’Brien
,
T. K.
, 2001, “
A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Lamiantes
,”
Composites, Part A
1359-835X,
32
, pp.
25
44
.
21.
Tay
,
T. E.
,
Shen
,
F.
,
Lee
,
K. H.
,
Scablione
,
A.
, and
Di Sciuva
,
M.
, 1999, “
Mesh Design in Finite Element Analysis of Post-Buckling Delamiantion in Composite Laminates
,”
Compos. Struct.
0263-8223,
47
, pp.
603
661
.
22.
Sun
,
C. T.
, and
Ahou
,
S. G.
, 1990, “
Failure Analysis of Composite Laminates With Free Edge
,”
J. Compos. Technol. Res.
0884-6804,
12
, pp.
91
97
.
23.
Zou
,
Z.
,
Reid
,
S. R.
,
Soden
,
P. D.
, and
Li
,
S.
, 2001, “
Mode Separation of Energy Release Rate for Delamination in Composite Laminates Using Sublaminates
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
2597
2613
.
You do not currently have access to this content.