A material composed of a mixture of distinct homogeneous media can be considered as a homogeneous one at a sufficiently large observation scale. In this work, the problem of the elastic mixture characterization is solved in the case of linear random mixtures, that is, materials for which the various components are isotropic, linear, and mixed together as an ensemble of particles having completely random shapes and positions. The proposed solution of this problem has been obtained in terms of the elastic properties of each constituent and of the stoichiometric coefficients. In other words, we have explicitly given the features of the micro-macro transition for a random mixture of elastic material. This result, in a large number of limiting cases, reduces to various analytical expressions that appear in earlier literature. Moreover, some comparisons with the similar problem concerning the electric characterization of random mixtures have been drawn. The specific analysis of porous random materials has been performed and largely discussed. Such an analysis leads to the evaluation of the percolation threshold, to the determination of the convergence properties of Poisson’s ratio, and to good agreements with experimental data.

1.
Hashin
,
Z.
, 1983, “
Analysis of Composite Materials—A Survey
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
481
505
.
2.
Walpole
,
L. J.
, 1981, “
Elastic Behaviour of Composite Materials: Theoretical Foundations
,”
Adv. Appl. Mech.
0065-2156,
11
, pp.
169
242
.
3.
Douglas
,
J. F.
, and
Garboczi
,
E. J.
, 1995, “
Intrinsic Viscosity and Polarizability of Particles Having a Wide Range of Shapes
,”
Adv. Chem. Phys.
0065-2385,
91
, pp.
85
153
.
4.
McLaughlin
,
R.
, 1977, “
A Study of the Differential Scheme for Composite Materials
,”
Int. J. Eng. Sci.
0020-7225,
15
, pp.
237
244
.
5.
Giordano
,
S.
, 2003, “
Differential Schemes for the Elastic Characterisation of Dispersions of Randomly Oriented Ellipsoids
,”
Eur. J. Mech. A/Solids
0997-7538,
22
, pp.
885
902
.
6.
Giordano
,
S.
, 2003, “
Effective Medium Theory for Dispersions of Dielectric Ellipsoids
,”
J. Electrost.
0304-3886,
58
(
1–2
), pp.
59
76
.
7.
Kachanov
,
M.
, and
Sevostianov
,
I.
, 2005, “
On Quantitative Characterization of Microstructures and Effective Properties
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
309
336
.
8.
Bianco
,
B.
, and
Giordano
,
S.
, 2003, “
Electrical Characterisation of Linear and Non-linear Random Networks and Mixtures
,”
Int. J. Circuit Theory Appl.
0098-9886,
31/2
, pp.
199
218
.
9.
Atkin
,
R. J.
, and
Fox
,
N.
, 1990,
An Introduction to the Theory of Elasticity
,
Longman
,
London
.
10.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
241
, pp.
376
396
.
11.
Eshelby
,
J. D.
, 1959, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London, Ser. A
1364-5021,
252
, pp.
561
569
.
12.
Snyder
,
K. A.
,
Garboczi
,
E. J.
, and
Day
,
A. R.
, 1992, “
The Elastic Moduli of Simple Two-Dimensional Isotropic Composites: Computer Simulation and Effective Medium Theory
,”
J. Appl. Phys.
0021-8979,
72
, pp.
5948
5955
.
13.
Bruggeman
,
D. A. G.
, 1935, “
Dielektrizitatskonstanten und Leitfahigkeiten der Mishkorper aus isotropen Substanzen
,”
Ann. Phys.
0003-3804,
24
, pp.
636
664
.
14.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
15.
Hill
,
R.
, 1964, “
Theory of Mechanical Properties of Fibre-Strengthened Materials: I Elastic Behaviour
,”
J. Mech. Phys. Solids
0022-5096,
12
, pp.
199
212
.
16.
Cherkaev
,
A. V.
,
Lurie
,
K. A.
, and
Milton
,
G. W.
, 1992, “
Invariant Properties of the Stress in Plane Elasticity and Equivalence Classes of Composites
,”
Proc. R. Soc. London, Ser. A
1364-5021,
438
, pp.
519
529
.
17.
Milton
,
G. W.
, 1990, “
On Characterising the Set of Possible Effective Tensors of Composites: The Variational Method- and the Translation Method
,”
Commun. Pure Appl. Math.
0010-3640,
43
, pp.
63
125
.
18.
Berdichevski
,
V. L.
, 1983,
Variational Principles in Mechanics of Continuum Media
,
Nauka
,
Moscow
.
19.
Lurie
,
K. A.
, and
Cherkaev
,
A. V.
, 1984, “
G-closure of Some Particular Sets of Admissible Material Characteristics for the Problem of Bending of the Thin Elastic Plates
,”
J. Optim. Theory Appl.
0022-3239,
42
(
2
), pp.
305
316
.
20.
Day
,
A. R.
,
Snyder
,
K. A.
,
Garboczi
,
E. J.
, and
Thorpe
,
M. F.
, 1992, “
The Elastic Moduli of Sheet Containing Spherical Holes
,”
J. Mech. Phys. Solids
0022-5096,
40
, pp.
1031
1051
.
21.
Thorpe
,
M. F.
, and
Jasiuk
,
I.
, 1992, “
New Results in the Theory of Elasticity for Two-Dimensional Composites
,”
Proc. R. Soc. London, Ser. A
1364-5021,
438
, pp.
531
544
.
22.
Christensen
,
R. M.
, 1993, “
Effective Properties of Composite Materials Containing Voids
,”
Proc. R. Soc. London, Ser. A
1364-5021,
440
, pp.
461
473
.
23.
Berge
,
P. A.
,
Bonner
,
B. P.
, and
Berryman
,
J. G.
, 1995, “
Ultrasonic Velocity-Porosity Relationships for Sandstone Analogs Made From Fused Glass Beads
,”
Geophysics
0016-8033,
60
, pp.
108
119
.
24.
Manning
,
W. R.
,
Hunter
,
O.
, Jr.
, and
Powell
,
B. R.
, Jr.
, 1969, “
Elastic Properties of Polycrystalline Yttrium Oxide, Dysprosium Oxide, Holmium Oxide, and Erbium Oxide: Room Temperature Measurements
,”
J. Am. Ceram. Soc.
0002-7820,
52
(
8
), pp.
436
442
.
25.
Powell
,
B. R.
, Jr.
,
Hunter
,
O.
, Jr.
, and
Manning
,
W. R.
, 1971, “
Elastic Properties of Polycrystalline Ytterbium Oxide
,”
J. Am. Ceram. Soc.
0002-7820,
54
(
10
), pp.
488
490
.
26.
Hunter
,
O.
,
Korklan
,
H. J.
, and
Suchomel
,
R. R.
, 1974, “
Elastic Properties of Polycrystalline Monoclinic Sm2O3
,”
J. Am. Ceram. Soc.
0002-7820,
57
(
6
), pp.
267
268
.
27.
Brown
,
W. F.
, 1955, “
Solid Mixture Permittivities
,”
J. Chem. Phys.
0021-9606,
23
, pp.
1514
1517
.
28.
Torquato
,
S.
, 1997, “
Effective Stiffness Tensor of Composite Media—I. Exact Series Expansions
,”
J. Mech. Phys. Solids
0022-5096,
45
, pp.
1421
1448
.
You do not currently have access to this content.