The force-extension behavior of single modular biomacromolecules is known to exhibit a characteristic repeating pattern of a nonlinear rise in force with imposed displacement to a peak, followed by a significant force drop upon reaching the peak. This “saw-tooth” pattern is a result of stretch-induced unfolding of modules along the molecular chain and is speculated to play a governing role in the function of biological materials and structures. In this paper, constitutive models for the large strain deformation of networks of modular macromolecules are developed building directly from statistical mechanics based models of the single molecule force-extension behavior. The proposed two-dimensional network model has applicability to biological membrane skeletons and the three-dimensional network model emulates cytoskeletal networks, natural fibers, and soft biological tissues. Simulations of the uniaxial and multiaxial stress-strain behavior of these networks illustrate the macroscopic membrane and solid stretching conditions which activate unfolding in these microstructures. The models simultaneously track the evolution in underlying microstructural features with different macroscopic stretching conditions, including the evolution in molecular orientation and the forces acting on the constituent molecular chains and junctions. The effect of network pretension on the stress-strain behavior and the macroscopic stress and strain conditions which trigger unfolding are presented. The implications of the predicted stress-strain behaviors on a variety of biological materials are discussed.

1.
Yan
,
Y.
,
Winograd
,
E.
,
Viel
,
A.
,
Cronin
,
T.
,
Harrison
,
S. C.
, and
Branton
,
D.
, 1993, “
Crystal Structure of the Repetitive Segments of Spectrin
,”
Science
0036-8075,
262
(
5142
), pp.
2027
2030
.
2.
Rief
,
M.
,
Gautel
,
M.
,
Oesterhelt
,
F.
,
Fernandez
,
J. M.
, and
Gaub
,
H. E.
, 1997, “
Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM
,”
Science
0036-8075,
276
, pp.
1109
1112
.
3.
Oberhauser
,
A. F.
,
Marszalek
,
P. E.
,
Erickson
,
H. P.
, and
Fernandez
,
J. M.
, 1998, “
The Molecular Elasticity of the Extracellular Matrix Protein Tenascin
,”
Nature (London)
0028-0836,
393
, pp.
181
185
.
4.
Fisher
,
T. E.
,
Oberhauser
,
A. F.
,
Carrion-Vazquez
,
M.
,
Marszalek
,
P. E.
, and
Fernandez
,
J. M.
, 1999, “
The Study of Protein Mechanics With the Atomic Force Microscope
,”
TIBS
0968-0004,
24
, pp.
379
384
.
5.
Rief
,
M.
,
Pascual
,
J.
,
Saraste
,
M.
, and
Gaub
,
H. E.
, 1999, “
Single Molecule Force Spectroscopy of Spectrin Repeats: Low Unfolding Forces in Helix Bundles
,”
J. Mol. Biol.
0022-2836,
286
, pp.
553
561
.
6.
Smith
,
B. L.
,
Schäffer
,
T. E.
,
Viani
,
M.
,
Thompson
,
J. B.
,
Frederick
,
N. A.
,
Kindt
,
J.
,
Belcher
,
A.
,
Stucky
,
G. D.
,
Morse
,
D. E.
, and
Hansma
,
P. K.
, 1999, “
Molecular Mechanistic Origin of the Toughness of Natural Adhesives, Fibres and Composites
,”
Nature (London)
0028-0836,
399
, pp.
761
763
.
7.
Li
,
H. B.
,
Carrion-Vazquez
,
M.
,
Oberhauser
,
A. F.
,
Marszalek
,
P. E.
, and
Fernandez
,
J. M.
, 2000, “
Point Mutations Alter the Mechanical Stability of Immunoglobulin Modules
,”
Nat. Struct. Biol.
1072-8368,
7
, pp.
1117
1120
.
8.
Minajeva
,
A.
,
Kulke
,
M.
,
Fernandez
,
J. M.
, and
Linke
,
W. A.
, 2001, “
Unfolding of Titin Domains Explains the Viscoelastic Behavior of Skeletal Myofibrils
,”
Biophys. J.
0006-3495,
80
, pp.
1442
1451
.
9.
Mohandas
,
N.
, and
Evans
,
E.
, 1994, “
Mechanical Properties of the Red Cell Membrane in Relation to Molecular Structure and Genetic Defects
,”
Annu. Rev. Biophys. Biomol. Struct.
1056-8700,
23
, pp.
787
818
.
10.
Jackson
,
A. P.
,
Vincent
,
J. F. V.
, and
Turner
,
R. M.
, 1988, “
The Mechanical Design of Nacre
,”
Proc. R. Soc. London, Ser. B
0962-8452,
234
, pp.
415
440
.
11.
Qi
,
H. J.
,
Bruet
,
B. J. F.
,
Palmer
,
J. S.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
, 2005, “
Micromechanics and Macromechanics of the Tensile Deformation of Nacre
”, Chapter in
Mechanics of Biological Tissues, Proceedings IUTAM
, edited by
G. A.
Holzapfel
, and
R. W.
Ogden
, Springer-Verlag, Graz, Austria.
12.
Gosline
,
J. M.
,
Guerette
,
P. A.
,
Ortlepp
,
C. S.
, and
Savage
,
K. N.
, 1999, “
The Mechanical Design of Spider Silks: From Fibroin Sequence to Mechanical Function
,”
J. Exp. Biol.
0022-0949,
202
, pp.
3295
3303
.
13.
Zhu
,
C.
,
Bao
,
G.
, and
Wang
,
N.
, 2000, “
Cell Mechanics: Mechanical Response, Cell Adhesion, and Molecular Deformation
,”
Annu. Rev. Biomed. Eng.
1523-9829,
2
, pp.
189
226
.
14.
Kuhn
,
W.
, and
Grun
,
F.
, 1942, “
Beziehungen Zwischen Elastischen Konstanten Und Dehnungsdoppelbrechung Hochelastischer Stoffe
,”
Kolloid-Z.
0368-6590,
101
, pp.
248
271
.
15.
Treloar
,
L. R. G.
, 1958,
The Physics of Rubber Elasticity
,
Clarendon
, Oxford.
16.
Kratky
,
O.
, and
Porod
,
G.
, 1949, “
Röntgenuntersuchung Gelöster Fadenmoleküle
,”
Recl. Trav. Chim. Pays-Bas
0165-0513,
68
, pp.
1106
1122
.
17.
Fixman
,
M.
, and
Kovac
,
J.
, 1973, “
Polymer Conformational Statistics. III Modified Gaussian Models of Stiff Chains
,”
J. Chem. Phys.
0021-9606,
58
, pp.
1564
1568
.
18.
Marko
,
J. F.
, and
Siggia
,
E. D.
, 1995, “
Stretching DNA
,”
Macromolecules
0024-9297,
28
, pp.
8759
8770
.
19.
Eyring
,
H.
, 1936, “
Viscosity, Plasticity and Diffusion as Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
0021-9606,
4
, pp.
283
291
.
20.
Bell
,
G. I.
, 1978, “
Models for the Specific Adhesion of Cells to Cells
,”
Science
0036-8075,
200
, pp.
618
627
.
21.
Lu
,
H.
,
Isralewitz
,
B.
,
Krammer
,
A.
,
Vogel
,
V.
, and
Schulten
,
K.
, 1998, “
Unfolding of Titin Immunoglobulin Domains by Steered Molecular Dynamics Simulation
,”
Biophys. J.
0006-3495,
75
, pp.
662
671
.
22.
Gao
,
M.
,
Lu
,
H.
, and
Schulten
,
K.
, 2002, “
Unfolding of Titin Domains Studied by Molecular Dynamics Simulations
,”
J. Muscle Res. Cell Motil.
0142-4319,
23
, pp.
513
521
.
23.
Byers
,
T. J.
, and
Branton
,
D.
, 1985, “
Visualization of the Protein Associations in the Erythrocyte Membrane Skeleton
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
82
, pp.
6153
6157
.
24.
Liu
,
S.
,
Derick
,
L. H.
, and
Palek
,
J.
, 1987, “
Visualization of the Hexagonal Lattice in the Erythrocyte Membrane Skeleton
,”
J. Cell Biol.
0021-9525,
103
, pp.
527
536
.
25.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber-Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
389
412
.
26.
Skalak
,
R.
,
Tozeren
,
A.
,
Zarda
,
R. P.
, and
Chien
,
S.
, 1973, “
Strain Energy Function of Red Blood Cell Membranes
,”
Biophys. J.
0006-3495,
13
, pp.
245
264
.
27.
Evans
,
E. A.
, 1973, “
A New Material Concept for the Red Blood Cell Membrane
,”
Biophys. J.
0006-3495,
13
, pp.
926
940
.
28.
Evans
,
E. A.
, and
Hochmuth
,
R. M.
, 1977, “
A Solid-Liquid Composite Model of Red Cell Membrane
,”
J. Membr. Biol.
0022-2631,
30
, pp.
351
362
.
29.
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
, 2003, “
Mechanics of the Human Red Blood Cell Deformed by Optical Tweezers
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
2259
2280
.
30.
Mills
,
J. P.
,
Qie
,
L.
,
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
, 2004, “
Nonlinear Elastic and Viscoelastic Deformation of the Human Red Blood Cell With Optical Tweezers
,”
Mech. Chem. Biosyst.
1546-2048,
1
, pp.
169
180
.
31.
Boyce
,
M. C.
, and
Arruda
,
E. M.
, 2000, “
Constitutive Models of Rubber Elasticity: A review
,”
Rubber Chem. Technol.
0035-9475,
73
, pp.
504
523
.
32.
Bischoff
,
J.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2002, “
Orthotropic Hyperelasticity in Terms of an Arbitrary Molecular Chain Model
,”
J. Appl. Mech.
0021-8936,
69
, pp.
198
201
.
33.
Bischoff
,
J.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2002, “
A Microstructurally Based Orthotropic Hyperelastic Constitutive Law
,”
J. Appl. Mech.
0021-8936,
69
, pp.
570
579
.
34.
Bischoff
,
J.
,
Arruda
,
E. M.
, and
Grosh
,
K.
, 2001, “
A New Constitutive Model for the Compressibility of Elastomers at Finite Deformation
,”
Rubber Chem. Technol.
0035-9475,
74
, pp.
541
559
.
35.
Boey
,
S. K.
,
Boal
,
D. H.
, and
Discher
,
D. E.
, 1998, “
Simulations of the Erythrocyte Cytoskeleton at Large Deformation. I. Microscopic Models
,”
Biophys. J.
0006-3495,
75
, pp.
1573
1583
.
36.
Arslan
,
M.
, and
Boyce
,
M. C.
, 2005, “
Constitutive Modeling of the Finite Deformation Behavior of Membranes Possessing a Triangulated Network Microstructure
,” to appear.
37.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
, 1998, “
Constitutive Modelling of the Large Strain Time-Dependent Behavior of Elastomers
,”
J. Mech. Phys. Solids
0022-5096,
46
, pp.
931
954
.
38.
Bergstrom
,
J. S.
, and
Boyce
,
M. C.
, 2000, “
Large Strain Time-Dependent Behavior of Filled Elastomers
,”
Mech. Mater.
0167-6636,
32
, pp.
627
644
.
39.
Reese
,
S.
, and
Govindjee
,
S.
, 1998, “
A Theory of Finite Viscoelasticity and Numerical Aspects
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
3455
3482
.
40.
Qi
,
H. J.
, and
Boyce
,
M. C.
, 2005, “
Stress-Strain Behavior of Thermoplastic Polyurethane
,”
Mech. Mater.
0167-6636,
37
, pp.
817
830
.
41.
Qi
,
H. J.
, and
Boyce
,
M. C.
, 2004, “
Constitutive Model for Stretch-Induced Softening of the Stress-Stretch Behavior of Elastomeric Materials
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
2187
2205
.
You do not currently have access to this content.